THE INSTITUTE OF
NATIONAL PLANNING

Memo. No. (1294)

On a Multiobjective Transportation

Problem.

BY

Dr. Amani Omar

April 1981




Introduction:

For some practical problems, the conventional transportation problem
which usually minimizes only the total cost of transportation, became of no
benifit to the real situation. For example, high way motor carriers, although
considerably cheaper than airfreight, require much longer shipment times, and
consequently the freshness and perishability of many grocery products are
influenced. Also, for a certain finished goods inventory, the shorter the
shipment time the faster is the response of a logistic system to surges in
demand. Furthermore, pipeline inventories and associated opportunity costs
are directly related to shipment times. Thus, for some problems of real sit-
uation, an average shipment time may be used as an objective function beside
the total costs. These two objectives, i.e., minimizing total transportation
costs and average shipment times are in general conflicting. It is not pos-
sible in general to minimze both (or all in case of more than two objective
functions) simultaneously. However, there are several different criteria wh-
ich could be considered and employed to provide alternate solutions to multi-
objective problems. One can determine the "efficient" solutions, and conseq-
uently the efficient curve, which denote the minimum attainable value of each
of the objective functions for different values of the other ones. This idea
of determining the efficient curve aids the decision making of the manager in
eliminating the inefficient solutions. The decision maker can then subject-
jvely choose that efficient point which mostly suits his company. Another
approach to the problem is to find the feasible solution which can be consid-
eredvthe best regarding the optimization of all objective functions. That
can be the solution for which the summation of the relative deviations of the

different objective functions from their optima is minimum. This turns to--



be the optimal solution of an overall objective function equal to the
summation of the different objective function each one weighted by the
reciprocal of its optimal value (see, reference (6)). On the other hand
if it is possible for the manager to order the objective functions accor-
ding to their relative periorities, thenAthe problem can be handled as
follows: a subset of the overall feasible region which contains optimal
solutions to the most important objective function is to be determined.
Oﬁt of this subset a set of solutions which optimize the second important
objective function may be located and so on the process continues for all
functions. The most inner subset is considered to be the optimal region
for the problem (see, reference (5)). Another alternative is to trans-
form the problem into a program of a single objective function if one of
the functions could be considered (by the manager for example) as the most
important one over a]i others. In this cases that funétion is taken to be
the main objective function and all other ones are to be transformed into
constraints with lower bounds. The lower bounds represent the required
ratios of the optimal values of the objective functions, e.g, it is reg-
uired at least 90 % of the optimal value of the second objective function,

85% of the fourth one etc. (see, reference (5§).

In this paper, we suggest a method for finding the efficient points
of a multiobjective transportation problem when the conflicting objectives
of minimizing}tota] costs and shipment times are considered. Corresponding
to each efficient point, the method provides the optimal routes, modes of
transportation, and the appropriate shipping amounts. The method has beenbased

one the idea of Srinivasan & Thompsons method(see reference 4). In section I we.



present some theoretical results of the multiobjective transportation problem.
In section II, a method for finding all optimal basic solution to the standard
transportation problem is provided; we sometimes need to identify all optimal
solutions (if there exists more than one) to the first or second objective

during the process of locating the efficient points. Section II1 presents an

algorithm and a worked example.

I. Theoretical Results For a Multiobjective Transportation Problem

Let
I= { 1,2, oo m'g , be the set of origins O (rows),
o= X 1,2, ...5 D } , oo destinations D (columns)
and
K = { 1,2,45000 PS , M " n 1 modes of transportations.
Let
xijk be the amount shipped from the origin 0; to destination
Dj via mode k,
C be the unit shipping cost from 0; to D4 via k,
jk
tijk be the time of shipping any amount from 0; to Dy via k,
a; be the available amount at O; (ag ?7 o),
and
. i D. . o).
by be the requirement at Dy (bJ jz; )

The problem is to generate the efficient solutions to the following

multiobjective transportation problem:



Minimize the toal cost

c(x) = = = = Cijk  Xiq

ie1 jeuy kK € K ijk

and the total time
T(X) = Z ‘ﬁ = tjjk x‘ijk

i 3j k
Subject to
== =_ X.. =a i €1 cees (1)
3 ” ijk
iz’. % x;5k = b jET .. (D)
Xk 7 © V i,j and k vees (3)

The following conditions are assumed:

(1) The p modes of transportation are available for all routes.

If this

is not the case, the unit costs cjjk and times tijk for the modes

not available for a route from 0i to Dj can be set equal to a large

positive number M, so that, the optimal solution will not utilize such

modes.

(2) For any route from O; to D; there are no two modes k and 1 with °1 5y £

J

©ij1 < M and tijk < i < M. If this is not so, ;31 is

set equal to tij] = M.

(3) A single homogeneous good is considered in the system. If there were

multiple goods, the problem may be solved separately for each of the goods.



-5 -

() = a4 25:: bj. A dummy origin or destination can be added in order
i

this condition to hold.

A feasible solution X to (I), i.e., satisfying (1) - (3), is called

. * . . . . A
efficient if there does not exist other )(easmle solution X such that

cf) € e ana T LTX

or C(X) < C(X) and (X L TX) .

We now consider the parametric problem P( A

Min (1 - 7\)C(X) + N T(X) , under constraints )
.dan

(1)-(3), where 0 é '>\ é 1.

Problem (II) is equivalent to problem (I) in the sense that:
every optimal solution to P( '}\ ) is an efficient solution to (I) and
conversely, if X is efficient then there exists a scalar }\ in the unit
interval (0,1) such that X is an optimalrsolution to P(° N ). The

sufficient condition is Lemma (2) in reference (1).
The necessary condition may be proved as follows:

Let o < W< 1 and assume that an optimal solution X to P( N)
is not efficient. Then there exists a feasible solution Q such that
c®) £ c(x) and (X)) £ T(X),
or e < cx)  and T K T(X).
Hence (1- ) C(X) +) (R) L= N Cx) + N0,

which contradicts the assumption that X was optimal tc P( ')\). The previous

argument does not hold when 7\ =0 or '>\ = 1. It holds only when there



exists a unique optimal solution to P( ‘A) for both N\ =0 and )\ =1.
Hence, it is assumed that there exists a unique optimal solution to each

of P(o) and P(1).

Let (CXT) denote the two dimensional space with cost C as the abscissa
and time T as the ordinate. Let W( 7\) be the convex set of all optimal
solutions to P( "\ ). Thus for each optimal solution X € W( N ), there

exists an image Q(X) = i c(X), T(X)& in ( CXT ).

Let Q [ W N )-X be the set of images corresponding to all
solutions in W( 7\ ) under this mapping. The following theorem proivdg

a characterization of the set of efficient points.

Theorem 1

(For the proof see Lemma 3 in refepence (1.) ). Fér each fixed value
of }\satisfying 0 <7\< 1, Q [W( PN )] is either a singleton or a’
compact line segment in ( CXT). In the second case if Q(Xl) ;nd Q(Xz) are the
end points of the line segment corresponding to the optimal solutions X,

and X9, then
0 % 3+ (1-3)%)= Qx 3+ @-5)ax, ),

for all J satisfying o© < 3 £ 1.
Now, let us introduce the modes of the transportation into the picture.

Let dij ( N\ ) be defined as

dij(?\)= t][(\jé& [’(1-X)cijk + }\tijk‘.k. voee (W)

Let Kij‘ ( '}\) < K be the set of indices over which (4) attains its



minimum for a particular route (i,j) and for a given value of '}\ , and the

= X3 , for a given }\ and solution X.

variables y. ;be Vi =
+ Y keKﬁ(l)

Let us consider the following standard transportation problem P'( 7\):

i = < . .
min == o5 i «( N) Y vees (5)
subject to
.£ Yij = a; , 1 EI, .... (6)
]
= Yij = by Lie T, ... (7)
i
and
Yij 7, 0 s \Q i,j . cies (8)
Let
1
C.: (‘)\) = min Cist (9)

and ki]- ( N\ ) be the index in Kij( ')\ X at which this minimum is attained -

Let t%j ( 7\ ) denote the unit time corresponding to the mode k;.l_j ( 7\ ).

Similarly, let

tij(l) = min ot ’- (10)

k € Kij ( 7\)1‘]
and ki ( '\ ) denote the unique mode in K;_ ( "N\ )at which this minimum is
j J
: (. \) the unit cost corresponding to k§ jlx)-Theorem (2)

J
below charactrizes the optimal solutions to P ( N\ ) and Theorem (3) relates

attained and Cg

the optimum solution of (5) - (9) to that of P ( 7\ ).



Theorem 2

(i) fbf' every opt'imél solution X to P( N, Xiik ° 0 for k © K:’gj( }\ ).

© . (ii) Given an optimal solution X to P( N, any other solution X satisfying:

- oxyy 0 for k€K (N, and

= Vo= =

- Kas ... = y. is also optimal to P(?\).
K€k (N 9k T Tk T :

_Theoren 3
Cori'esponding to any optimal solution Y to P'( ‘A),(for some given )\),‘

the solution X, =. {x}g k } that has‘the minimum total cost is given by:

' =11
x%jk = ' | | ' ’ Vi,j .
! |
0 k#ky CN) el (11)

The corresponding total cost and time are:

cxl)y === = ¢t () | e (12)
0 i j 13 7\ yij | |
and. . . ; -
T(x1) =‘f 5 t%j( }\ ) yij‘ ' eees  (13)

| B . | |

The solution x? that mininiizes the total time is given by

. e
2 -
gk | » Vi,
o Ok ERGONY Joeie (14)
c (X)) == =— cfj «(N\) Yij vere (15)
i i ,

and ‘
2 = = 2 .
7(x?) j g ) 744 - ver. (16)



From the above theorems, it follows that the set of efficient points (cxm

of problem (T) can be obtained by applying the following basic stages:
1) For each chosen value of '\ Wwe optimize the problem p' ( )\ ).

2)  Using theorem (3), the optimel solution of p( A ) corres ponding to that

of p'( N is constructed.

3) If for any 7\'the optimal solution is mnou unique, we choose among the
alternate optimal solutions a 1imit - cost solution X¢ and a limit-time
solution x such that c(x®) < c(X) and r(xt) << T(X), where X is any

optimal solution to p (N).

L) By theorem 1, the set of efficient points is the line segment connecting
the limit-cost point [ c(x®), T(Xc)]and the limit-time point
[ex®), =)

( If the optimal gsolution is unique for any 7\then the limit-cost and

1imit-time points coincide).

It is well known that any optimal solution to a linear progremming
problem is a convex combination of its basic optimal solutions. The following
theorem uses this result to identify the limit-cost and limit~time solutions

for any '>\. Using this theorem we can implement the previous stage 3.

Theorem 4*

Let Y 10 Y2 s cee YS be the Dbasic optimal solutions to p'( 7\). Let

1l 1 1 2 2 2 .
X X2 s see Xg and X, , X2 y ses s X be the solutions constructed

g

# For the proofsof theorems (2)-(4) see reference (4)-



10_

corresponding to Y4, .- Yg using theorem (3). Then the limit-cost solution
Xy to p( }\) is given by that solution which minimizes C(X%), i=1,...,8, and
the limit-time solution X2 is given by that solution which minimizes T(Xi) s
i=1, ¢ovy &

II- A Method for Generating All the Alternate Basic Optimal Solutions
to the Transportation Problem

Let us assume that the transportation problem; min.
= ﬁl_é_;- Cij x3j subject to 61 X3y = by 'Z:'; | 35 = 83 3
i= 1,...5 My j= 1, <.y Dy and xij
optimal solution. This can be recognized from the final optimal transporta-

2; 0, has more than one

tion tableau, when the coeffients of some of the nonbasic variables have

the value. zero. An indicator ©Cof a basic optimal solution Y to the pre-
vious transportation problem is the set (i1, ips voes imen- 1)C: 1UJ, where
il’ 12’ eevs ipin-1 are the indices of the basic variables. Two indicators
<><i,<><2 are said to be neighbouring indicators if all except one of the
elements ofC7<1 andc><5 are the same. The neighbouriné set of an indicator&
consists of all neighbouring indicators to ol and will be denoted by a(ed ).
Let P denote the set of all indicators of the optimal basic solutions.

The method is based on the use of two sets. The first is sz P, we call it
the served set, and tﬁe second is W' C P, we call it the waiting set. We
start the process with an optimal basic solution Y. We store the indicator
&, associated with Y  in the set gror=l, i e., sl=0. We analyze the optimal
transportatlon tableau corresponding to OL to specify all the nonbasic varia-

bles of zero coefficients. If more than one neighbouring indicator ofO(b will
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be created from the current tableau, we store all of them except °<° in the
=1 (] 4 g - . .
set WO°F , 1.4y w1 = 6( 0(0) - °(°. If only one indicator 1s specified,

{

say / X / we calculate its corresponding solution and put & in §7°7 =2

, 1.e.,
2. & ol o, :
s¢= % U« . We pick the last element stored in W~, say/ 4/ if more than
one indicator have been stored in Wi, and calculate the associated basic
optimal solution. We examine the optimal transportation tableau corresponding
to °(1 in order to create the new indicators (if there i. any) neighbouring
) 2
to °(1. We update 82 and W by adding the new neighbouring indicators of "(1
r : :

1

to W2 and removing °(1 from W2 and adding it to s? so we get

2_ X y X 2wt « 2
s = OU 1 and W =W UG 1)—S.

We pick the last indicator stored in 82 and repeat the same process. At the

g-th stage the waiting set w8 and served set s® will be:

g

g-1 _
UG ( °<g_1) s®.

=68ty &  ana WE=W
g-1
The process will terminate finitely when Ww* = . We now prove that all optimal

basic solutions will have been found finitly when w* = @. The proof runs as

follows:

From the construction of Sg and w8 we have sé N Wg =<‘>. Since the

number of basic optimal solutions is finite( (om_+n + m ! 45 an upper
nm! (n + m) !

bound) and any indicator in w8 will sonner or later leave w8 and enter s8

then after a finite number of jterations WX will be empty. The only statement

iS r . . r
to be provedvthat W = & implies S = P.

Let 0(0 be an element of P. Since we start with an optimal basic

solution then s¥ # ¢ . Let & 1 be an element of s¥ < P. Then we have
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a finite sequence of neighbouring indicators
N %y S
such that /
o € g ) , 3=1,2, ..., k-1
i+l ]
The existence of this sequence follows from the fact that any optimal basic
solution to the transportation problem can be obtained from any other optimal
basic‘sblution 'h& a finite number of iterationg ; this follows from the fact
that the graph of the feasible region of any linear programming problem is
connected. If some °(j ;e 8T, then it had entered ST at some iteration

g3 é r, say. Thus either °<j+1 is an element of Sgi, and hence °(j+1e s,

or &, is not an element of Sgi‘and «, € 6 ¢( o .) which implies
j+1 - in J

++1
0(j+1 € wgl . Since W = <, tl'Len‘(j+1 must have left WP at some

iteration between the (gj~ + 1)-th and the r-th stage and entered the set
gi+1 e

. aP . It S N o r
S so that °<j+1 ST, Thus in any case o(j € s implies o(jﬂC s .
Since "(1 € s we have by induction °S(= 0(0 € s*. Therefore P < S*.

But SF <. P. whence P = S°. C

The method presented in this section will be used to find the alter-

nate basic optimal solutions required by theorem (4).

III Statement of The Algorithm And a Worked Example.

We combine the results of the previous two sections to provide the

algorithm below. Applying the following steps, the set of efficient points
of problem (I) can be located, and the optimal transportation routes, modes

and shipping amounts can be determined.



o

Step 1. Let 7\= o. Determine dj. (o) and Kij (o) by using equation (u):

Using equation (9) - (10), find
1 2 1 \ 1 2
Ky (o), K35 (o), Chy (), iy (e)s  Cij (@), and t35 (o),

forallielI & j€J. Solve the transportation problem P (o), i.e.,

(5) - (8), and find the basic optimal solution Y

Corresponding to Y® find the limit - cost solution X1 by equation
(11).

Find the limit-cost point[C(Xi),T(Xijby (12) - (13). The efficient
point in ( CXT ) space corresponding to >\=0 is given by ‘;C(Xi), T()(1 )
(Note that Y is unique by assumption, thus the 1imit-cost and time points

coincide for }\ =0).

Step 2. Choose different values for 7\ in the interval (o,1). For each

chosen value of 7\ , apply the following:

(i ) Determine K; ( '}\) using equation (4) and evaluate k%j (N> ka_j' N
and the corresponding C}j « N, t%j ON ),ng ('N\) and t%j ( \) from

from equations (9)-(10) for all iu?j.

(ii) Solve the problem P‘( )\). There are two different cases:
a) If the basic optimal solution Y to P ( ) is unique, then find the
limit-cost solution x! using (11) and the limit-cost point [C(Xl) s
T(Xl) ]using (12)-(193). Stmilarly determine the 1imit-time solution

X2 using (14) and the limit-time point [C(Xz), T(X2)\using (14)-(15).

% Since it is assumed that there are no two modes with the same Cijk’ then
the set Kij(°) is a singleton.
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Label the line segment connecting the limit-cost and limit-time

points as the set of efficient points corresponding to "A(theorem (1) ).

b) If the problem P ( °N) has alternate optimal so].utions'il then use the
method of section (II) to get all basic optimal solutiomns Y; » i21,2,...,9
Corresponding to every basic optimal soluti.r Y, determine C()&l ) us-
ing equation (12). For the Y which minimizes C(in') determine the limit-
cost solﬁtion x! by equation (11) and the limit-cost point [C(Xl),T(Xl)l
by (11) - (13). Corresponding to every basic optimal solution determine
T(X?L) using equation (14). For the Y which minimizes T(Xi) determine
the limit-time solution x2 by (14) and the limit-time point [C(X2),

(x ) | by (15) - (16).
Label the line segment connecting the limit-cost and time points as

the set of efficient points corresponding to 7\ .

Step 3 Once an efficient point is chosen from the -efficient curve, find the
corresponding value }\*. Determine Sksuch that

e, = ¢ e, b+ - & e, 10 )\
where the terms in square bra?kets are the limit-cost and time points for)\*.
The optimal solution

%

X = § xl + (1- 5* ) X2, determines the optimal routes, modes,

and the shipping amounts associated with (C,T).

% fThis will be recognized when some of the nonbasic variables have zero
coefficients in the final optimal tableau.



A Worked Example

Let us have the following data for 3 ware houses (Wi), 3 markets

(Mj) and 3 modes of transportation.

6 'y 8 10 6 12 1 16 11 16
3 3 3 2 1
L aihi oG4 8 ’ 5 . 7 ’ 4

20 19/ | 16 28 14 22 “ | u8 / 19 24
11 9 13 7 5 7 / 3 u 6

2 /16 18 g V 30 9 10 Yy)
3 5 10 21 Y n 1 3 2 =
Mode No.l Mode No.2 Mode No.3

Highway Railroad Airfreight

For each of the three modes R=1,2,3, the top entry in cell (i,j)
denotes the cost Cijk of shipping one unit of the good from W; to Mj Via
mode R. The bottom entry in (i,j) denotes the time tijk for shipp-
ing any amount of the good from W; to Mj Via mode k. The available
amount for Wl,W2 and Wy are 50,70 and 80 units, respectively; the re-

quirements bj for Ml,M2, and M, are 110,60, and 30 units respectively.

We set A= o. Then

dij(o) = min cijl f/Ci . For all i and J Kij(o) :?_l&.

k=1;2,3
4 = %2 - 1 - o2 -
12 (0 = ¥25(0) =11, atso, ¢} (o) = ¢5(0) = ¢y and
1l - +2. - . . . '
tijio) tiJ(O) ti5 for all i and j.

The transportation problem pY(0) and its optimal basic solution gbtained

by MODI method (see, reference (2)), are shown below. The circles denote
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the basis cells with the amounts y; j shown inside the circles.

25 Z iy viy T Oa W, B ¥ 207y T 0 T Ryas
) + 2yq) + 6yy, t 18y5, -

subject -to

3
= Yij =8y ’ i?la2a3 5
j=1
3 ,
Ef yi =b,, Jj=1,2,3,
J J
i=l
. M | A M
ARAT } 1 ‘ 3
’ B
5/ v/ 8 /

W | o _— B |

From equations (i2) and (13) we get

Ly: = cr (0) v.. = = c..
c(x™) : ‘f‘ 50 Yy T g ‘{-—j 1j471j

= 6x30 + 8x20 + 10x60 + 16x10 + 2x80 = 1260, and
1y, . = 3 . = =

1 ] i j .

30x8 + 20x7 + 60x9 + 10x13 + 80x3 = 1290.

For \= 0 the limit - cost and 1imit - time points coincide, then this

efficient point is shown as the point A in Figure (1).
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Now, we choose the value -2—-for7\. Then the coefficients of the problem

p'(1/2) are:

(—--) min X.—LC . =t 'g , for i81,j€J.
k=1,2,3, 2 4 2 1i3J b

Using equations (l&) (9), and (10), we calculated Ky (-—),
. 1 231 )
gi.(l:-). ’g‘.ﬁ(é—i. :Cﬁ(—é-), ( -, t (--5) and t ;j(—) as shown in Table

(1) below.
the- problem p (—%'-) takes the form:

min 7yll + 9/2y + 15/2y + 31/2y2l + 19/2y22 +

:29/2y23 + 5/2yl3 + ll/2y23 + uySa

Subject to e » : ' PR
_%y { £ | Pamadads| c 1 : :
L 2
Z vy eby e FL
and g1 o -
;;5”yi§p-0‘, '

B i Y

Using MODI method, we get the optimal:bas,ic solution: yu = 30, Y3 = 20,

Yoy = 60 5 Ypu = 10 Py,, = s0.

The optimal solutlon is unique, bécause the Coeffiolents of the wombasic varia-
bles are all strictly negative. '

From (32) and (13), we get:

c(x}) = 6x30 + 20x8 + 60x10 + 10x16 + 2x80 = 1260

& T(Xl) = 8x30 + 20x7 + 603(9 + 10x13 + 80x3 1290.

Thus this limit=cost point [C(Xl), T(Xl)] is the same as the point A in Figure
(1) obtained eax"/lier.

The limit-time point, using (24) and (15), is:
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Table (1)
W Lo S ) M G %y ) is & LAy ) i
(1,1) 7,8,19/2 7 1 1 6 8 1 6 8
(1,2) 9/2,9/2,13/2 9/2 {1,2} 1 4 5 2 6 3
(1,3) 15/2,15/2,17/2 15/2 il,?} 1 8 7 2 12 3
(2,1) 31/2,35/2,51/2 31/2 L2 1 20 11 T 20 11
(2,2) 19/2,19/2,23/2 19/2 {1,2§ 1 10 9 2 14 5
(2,3) 29/2,29/2,15 29/2 {;,é{” 1 16 13 2 22 7
(3,15 5/2, 3,5 5/2 51} 1 2 3 1 2 3
(3,2) 11/2,13/2,13/2 11/2 3L 1 6 5 1 6 5
(3,3) 14,17,21 o 02} 1 18 10 1 18 10

Computation of k.. (— 1 1 2
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c(x?)

2 (1 -
4{ Zcij 30 yij © 1640 and

2f ét.a(——) ygy = 910

'r(x2)

Then the limit-time point for \= .—’2-- is the point B = (1640, 910) in Fig,
(1). Therefore, using theorem (1), the line segment connecting A and B in
Fig,(1) locates the efficient points for )\- 4. Si.ce the point A =

(1260, 1290) was resulted from solving both the problems p'(0) and p'(-——é
then A is the el’ficiént point for O 57\\—-2- .

Next, we choose<'}\ {ér For this value of 7\we f£ind that the limit-cost
point and 11m1t-t1me point coincide with the point B in Fig. (1). We choose
')\= _g—-. The computed values of d. j(-——-).,KlJ(—---) s Kkt ('§'°’°""t13(§ =)

are shown in Table (2).




20

Table (2)

3 = g vagy a6 K G305 it faeiinh 6

(1,1;  '22/3,..,22/3 22/3 2_1,2,3} 1 6 8 3 16 3
(1,2, 14/3,12/3,15/3  12/3 {2} 2 6 3 2 6 3
(1,5,  22/3,18/3,18/3 1873 {2.3} 2 12 3 3 16 1
(2,. uz/a,uz/s,su/a;- 42/3 11,2} 1 20 11 2 28 7
(2,2)  28/3,24/3,27/3 a3 {2} 2 1 5 2 14 5
(2,3)  42/3,36/3,36/3 38/3  {2,9 2 22 7 3 2 6
(3,1) 8/3, 8/3,11/3 8/3 21,2§ 1 2 3 2 u 2
(3,2)  16/3,17/316/3 16/3  §1,3] 1 6 5 3 10 3
(3,3)  38/3,38/3,ut/3 38/3  §1,2} 1 18 10 2 30 4

2
Computation of ki (2/3), k. (2/3) and k__ (2/3).
J ij ij
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Now solving the problem p'(2/3):

min z: id (2/3) yij’ subject to Z:yi_ = bj’
i J
j=1,2,3, Z_ y,:i =a, i=1,2,3, and vy, 1§ >0, we get the following
3

unique optimal basic solution:

@ -6/3 @ , The values appears in the nonbasic cells are

-2/3 ®@
(60 | -24/3| -3u/3

the coefficients of the nonbasic variables.

Table (3)
The limit-cost point for 7\= 2/3 is the point (1640,910) which is the
same as the ﬁoint B. However, the limit-time point cai.culated by (14) &
\J.'E‘}v',id.Céx2), T(x2)) = (2200,630). This point is shown as point C in
Fig. (1). Hence, the point B is the efficient point for -%-(A\<2/3,

and the line segment BC represents all the efficient points for A=2/3.

Let\=1. Then d.;.(1) = min t5:, =t and
ij k1,23 ijk ii3
R 2 - - 1 - 2 = 1l = 2
kg0 = [ade Ky = gy o Ry = ) = gy, and £ = ()
= %333

The optimal basic solution to p'(1l) is

AN
> :i)il'“é)

%#yy
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using equations (12) and (19), we get

ey = = & ¢ 1)y, = 3620 and
i J 1 iJ

xh = & ﬁj-t}j(l) ygy = 400.

The efficient point (C, T) = (3620, 400) is shown in Fig. (1) as the point

N. To connect the point C with N we search for the values of ):s which have
contineous coincidence of limit-cost points with limit-time points of the
preceeding ones. For example, we found that the limit?time point ¢ for)\=2/3
coincideswith the limit-cost point D for A= 4/5, the limit-time point D =
(2240, 620) coincideswith the limit-cost point E = (30, 440) for X\ = 5/6,
and the Timit-time point E coincideswith the limit-cost point N=(3620,400) ,
as shown in Fig(1).

Now, the line segments connecting the efficient points in Fig.(1)

represent the efficient points of problem p ( N).

Now the task of the manager has been simplified since he has to
choose only a point from the efficient points along the efficient curve. Sup-
pose that he subjectively cho the point c. Then the optimal shipping routes
and optimal amounts are as shown in Table (3). The optimal modes of shipment
of ¢ are given by the kfj (2/3)-column of Table (2), e.g, x1n=x112~'= 0 &
x113=30, X221 = X293=0 & Xppp = 60. The optimal solution of the point c uses
only rail-road and airfreight. If the point B was chosen, the optimal shipping

routes and amounts remain the same but the optima] modes are those given

by the column K (2/3) in Table (2); only h1gh-way and ra11road may
he used. If the manager were to choose the efficient point G wtth
C=2060 and T=700, i.e, G is 3/4 the way between B and C, then the cor-

responding optimal solution would be

XG=_3_..X PO,

4 4
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where x® and XB denote the solutions corresponding to the efficient

G
points C and B, for example, for (i,j,) = (1,1), xlll = 7.5,

e
X112

G

Figure 1l

(576 € 7<)
N

N L1 1 L A ] 1 | { ¥ i ~,

V2o

]
T e Igee Zmo  1zw M» Rbo Ageo 3ew Bz koo heo 3 goo
Efficient Curve For the Worked Example

Total Cost C.

To see how the process be carried on when the problem p'( A) has more than one
basic optimal solutions for certain value of A let us assume that p'(2/3) has
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more than one optimal solutions and the final optimal transportation tableau

for p' (2/3) were:

@ o
] © | @9 .

Nesapwve |Negative
Q7" L.

X3

where the coefficient of Xl2 were zero. If the coefficients d13(2/31$d22(2/3)
were 8 and 3u4/3 instead of 18/3 and 42/3 respectively, and if we use the

method of section (II), we get the following basic optimal solutions xi,XQ,

and Y,V & o

@ 0 @ @ 0
Y:"{W‘i . i =
Ul @

St
& o VCIIE
-

Yol 0@

6 |24 2%

| o

lsing equation (12), we obtain: C(X%)= 1640, C(X%) = 1680, and C(X%) = 1860.
U¥ing equation (16), we have
7(x3) = 630, T(x2) = 690, and T(X3) = 750.

Hence, we have to choose‘[C(X1) T(Xg)] = (1640,910)

as the limit-cost point since C(X ) =min iC(X' ig
i=1,2,

The limit-time point were to be [C(Xl), T(Xl] =(2200,630) ,for T(Xl)-mln iT(xz)}
i=l,2,

These two points occasionally coincide with the points B and C.
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