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Introduction

In the fifties, the theory of nonlinear programming was almost limited
to problems in which the constraints and the objective functions were convex.
In the sixties, it was gradually recognized that for most of the theorems to
hold and for many of the methods to work, only some weaker property of convex,
or even linear functions, is required, property that share with wider classg_s .
of functions. The inspifation came from mathematical economics where the s:Lgn:L- .
ficance of the quasiconcavity concept was recognized before its emergence in the
nonlinear programming theory. In fact, most business is based upon the notion
of quasi-concave (and related) functions. For objective functions of this kind
have played an important role in the real practical problems. For example, the
fundamental property of theiutility function in the theory of consumer demand is
that the indifference curves define convex sets or a diminishing marginal rate of
substitution. Thus, the minimal property of all utility functions is quasi-con-
cavity. In addition, the theory of efficient production can now be extended to
include production functions that are quasi-conca\ie but nc‘;@:__.;.“c":qncave, that is to
those cases in which there are increasing returns to scale but a diminishing
marginal rate of substitution. For if a firm's production function takes the
form y= KX 1B s )0, B 7 o, then y will be quasi-concave but not concave
when oK+ B 1. Then the problem of determining the efficient combinationvof ‘inputs

given any specified output,isaquasi-concave minimum pboblem. That is, the problem

of minimizing rK + WL, where r and w are the cost of a unit of K and L respec-
tively, subject to the constraints y-y® 2o, L7//o0, and K 70, is a quasi-

concave minimum problem.



In this paper, we are interested in developing an enumartive method
for solving the following problem:
Min {f(x) : x€ X}, where either the assumption
(I) f£(x) is a quasi concave in X and X is bounded
or the assumption. ‘
(I1) £f(x) is explicity quasi concave in X,
applies
X is the convex polyhedron described by the linear inequalities.
rd °
(ITI)... ajq %4 + ajp X2 + ... + ain ¥y L ds, i=1,2, ..., m.
and X3, X271 ...5 ¥p ;; o.
The characteristic of the developed method is that it produces all vertices
and infinite rays (if any) of X in order to check them for optimality one
by one. This class of methods, which they give a full description of the
feasible region in terms of its vertices and infinite rays, is not very
popular since the number of the vertices may be very large;éféqnfor a modera-
tely sized problem, On the other hand, this kind of methods are very power
in the sense that the spectrum of problems that they can solve is very wide.
In addition, they are applicable to a class of problems, e.g., quasi concave
minimization, which are not amenable to any other method. However, when
evaluating a programming method the most important feature to take into
account is its power. A method which for example can solve a problem of
quasi convex function is more powerful than another which requires convex
function, and the latter is superior to a third in which the objective func-
tion must be linear. The second aspect is the computational efficiency, i.e.,
the number of arithmetical operations to be executed and the amount of data to
be stored. These two aspects are, unfortunately, usually:contradictory,i.e.,

more powerful methods tend to be less efficient and vice versa.



A PORTRAN ¥l program is ceded for the proposed method and presented with
all necessary comments in the last section. The program has been run on the
INTERDATA 7/32 computer with some selected test problems. The outputs of some

problemg are given.

Some Basic Properties of (Explicitly) Quasi-Cencave Function:®

Capital letters are used to denote sets, lower case letters are applied
for vectors (also called .points) and Creek lgtters for scﬁlars. All the sets are
consldered to be subsets of the Euclidian n-space EP. In the sequel the set
\(x,y] de:'uote'!s a ci?s;.ed straight line segment connecting the points x and y, and

(x,y) denotes an opengQne.

For the reader's conveniehce,mrecall‘a‘ few well-known definitions.

Convex set . The set S is convex if xl,xzes implies ['xl,le < S |

Polyhedron: A polyhedron X is the set {x ! AXLd4, x )o }, where A is a matrix

of order m x n and d is a constant vector of order m,

Polytope . A bounded polyhedron, marke: as XA .

Vertex: The point x is a vertex of X if x€ { and X - {x}is convex,

AdjJacent Vertices: Two different vertices X) 9%, € X are adjacent if X - [xl,x{l is

convex.

Concave function: A function f is concave if £(© x) + (1-8) x,) )0 £(x,) + (1-0)

£(x5), of 0 <1, for all X3s%, in the domain of f(x),



,-

~ : S
Definition 1. Quasi-Cencavity. The fuﬁction f(x) is quas:.-conca(fe 1n set S,

if for all X,+%, €S and for all Xq e ("1”‘2)’
fx,) ymin {f(xl )y £(x, )} .

Equivalently , £(x,)#( Xp) implies f (%, )} £(x,) )

Definition 2 Explicit Quaéi':-cgncavi‘ty,l The fune'cion f(x) is caa.led explieit

quasi-concave in a set S, if for all xl.xzes f(xl) #:f(x )y

£xg) 7 min [ £(x)), f(xz)] L %€ Gy

'

It is evident that explicit quasi concavity in volves quas:.-concavity. ;
The concept of quas:‘.-concave functiens wah intz-oduced by Arrow and Bm:hoven (l),
and the cencept cf explicft quasi-concavity was. that of Mantos (3); 'l’he follawing,”: .

figures illustrate two graphs for quasi-concave and explicity quasi—conccve func- . .

-,,;v.\,, DR S N -»‘“3,,'-',.- ‘.,,- : ‘-,! AR

tions for the single vaviable case.

o S

Quasi - Concave ~ -~ = - 0 Expﬁcige Qua§i . Conéﬂs/é *;4» -

The quasi-concave function may have horizontal stvaight segment any where b\.tt

the explicity quasi-concave can have it only a1: the top.

Definition 3: Global Minimum point. Thézpointx e'

function f£(x) in S, if f(x) £ f(x) for each xes



Definitien 4! Glebal Vertex-Minimum. The vertex X is a global vertex-minimum

of f(x) in the polyhedren X , if £(x,) L f(x) for each vertex x of X .,

Definition 5 : Infinite Ray.

Let x be a vertex of the polyhedron X and x, a peint in En. Let Xy be the sub-

1
.vector of x containing the noenbasic variables and-xNl the subvector of x, whose
components correspond te XN’

The set R = {r: r = x + AN(xy-x), ) o}

is called an infinite ray of X emanating from x if (i) R is a subset of X f
and | - | |

(ii) Exactly n;l compopénts of XNl are zefos.

(xlvx) is called the direction of R.

Since we are cencerned with the minimtun value of the (explicitly) quasi-concave
i

function defined on X, we present the fo])owing.two theorems (for the proof see

~——

Martos (4) ).

Theorem 1

[

. The function f (x) is quasiconcave in the convex set SSEf and only if =

B
for each polytope X%;;S any global vertex - minimum point of f(X) in X is a global

A
minimum point in . X .

If the feasible region X is unbounded, then a quasiconcave function, of
course, need not assume a minimum. But theorem (1) shows that a quasiconcave

function assumes its minimum value at one of the vertices of the feasible region if that

region is bounded. If the region is unbounded it need not assume a minimum vaiue,-

{...



and, even it has a minimum over the region X, it need not occur at a vertex
of X. For example, let Ef be the positive orthant of the plane which is

a polyhedron whose only vertex is 0, then the function

f(x)=\1- ifx=0
0 if x ;>0,

is quasi concave and assumes its minimum f (x) = 0 every where in EE except at
the vertex 0. For the function which is explictly qdési concave, the necessary

part of theorem (1) holds in the following sense.

Theorem 2
If £ (X) is explicitly quasi concave inAunbounded X and assumes its
minimum in X, then the minimum is attained at a vertex of X. In other words, '

any global vertex-min.. of f (X) in X is a glcbal minimum point.

‘The following three theorems characterize the set of the points that
are global minimum points of (explicitly) quasi concave function. These
theorems may be useful when looking for all the optimum solutions . het

s*o={Rex: i £ (XM & (X), for all xexy,

‘and § = X-'S* = {32 e x: f(X) <f (X) for someXe)(}.

Theorem 3

If £ (X) is quasiconvex in the convex set X, then S*‘is convex.

~ Theorem 4

If £ (X) is quasiconcave‘in X, then'g is convex.



"Theorem 5

- If f (X) is explicitly quasi congave in X, then for any closed seg-

ment:(kl,;xé];q::,x either (}1, xé}qﬁs*‘or (Xl’,XZ)CFS'

“The following theorem characterizes the directions of infinite
rays of X. It will help in constructing the infinite says (if there is any)

of a polyhedron X.

Theorem 6 ‘ -
| The set R = {r T r=E X {";)\(xl - x), ')\ V2 0}1’5 an infinite ray
of x if and only if

(i) B(x;-x)=0

(i) Xy =x >0

and (III) n-1 components of Xyq are zeros.

A Method For Locating Global Minimum.Points:

b The set of all vertices V=\{§i, Qé,-..., Qg} and the set of all inifinite
. rays (if x is upbq?nded)-R=' { Rl’ Rys +2es Rt } have to be determined. Briefly,
these two sets can be generated as follows: we start by any vertex Qs of‘)(and

save its index in a set S. We identify a]j adjacent vertices of Q; and keep their
indiéeéﬁin a set W. We thooée ény element of W to calculate its corresponding
vertex Qr and all new adjacent vertices of Q}. The set W is updated to contain

the indices.of the uncalculated verfiéés and the set S is updated to cont;fn the
.indiéas of f; and Q}. We continue in this;manner ti1l the set W be empty*. All

Vertices wi11‘h§ve‘beenffound when W = < (For the prodf, see (6)). For any =

* Fogﬁthe detailed algorithmu of this method, see (OMAR, 6),



vertex, say, ii , if the Kth nonbasic column yt = B;} ak in the simplex tableau
associated'with X s Ba’is the basic matrix corresponding to Q% , has nonposi-~ .

tive values for all its components, then the infinite ray Ri;emanating from:ix

is constructed as follows:

{QBI yﬁk
% ;)

*B2 Yok
Ry (X)) = | e . 220,
*Bm 7K Yﬁk
0
t
LO | E& ! he k-th position
o

where le s th, cee QBy are the basic variables of ;% . 'The set R will be

empty if x js bounded. This will be recognized ddring the process if no columns
C e

such as jt, i.e,nénbasic;columns of nonpaositive elements, is found.
A

Now to solve the problem minX f (x): xeX} under assumption (I),
we have R = i Then by theorem (1), all the vertices Q&, is= 1,’2, e S, SAt--
isfying f (Qj) < f(ft) for any vertex X , are global minimum solutions to the

%
problem.

i

To solve the problem under assumption (II), we follow the folloﬂing o
steps: , o
Step 1: Compute the value f* = minv{ f (ii), i=1, 2, v.us kg_,
to determine the set S* = {Qi s £ (%) =.f%} .
Step 2: (i) If R is empty, go to step 4. (ii) If R is not empty go to step 3.
Step 3: Compute | i

I = ‘ilgLof (R_i (N)), foreachi=1,2, ..., t.



(i) If Ii < f* for any i, then the problem has no solution.
(i1) If Ii o fx foralli=1,2,...,t, go to step 4.
Step 4 : Any vertex Qi € S* is a global minimum solution to the problem with

optimum value f* for the objective function.

Practically, the 1imit in step 3 is calculated for sufficiently large
value of ‘N\. In the fallowing FORTRAN program,'\is taken to be 0.1 x 1060
The largest positive value holded by the word of the INTER DATA 7/32 Computer

70
which has been used to ¥un the program,'is 7.2x10 « Yt remains to provethat:

Theorem 7:

The previous procedure solves the problem under assumption (II) fini-

tely.

Proof :
The finiteness of the procedure follows from the fact that:
(i) The number of vertices of X is finite, an upper bound is (n+m)l/’
nl m} .

(ii) The number of inifinite rays is finite, an upper bound is

nx (n*ml

nl ml
(ii1i) The method used to genrate the sets V and R is finite (see,
omar (6] ). '
Now, in case of step 2 (i), i.e, R = ¢ , any point of ¢ is an optimum
solution to the problem by theorem (i){
To prove the statement of 3 (i), we have to show first that f (Ri( N))

is explicitly quasiconcave function of Afor any '\ >0 and ii= 1, 2, ..., t.
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Let-;"ii.f ‘be a-vertex from which an infinite ray emanates let A s 7‘2

be > 0 such that .- - . S :

ey £ L '.h oo iR . )
Cey, - f (x‘i + 7\1 y,].) vt (x"i + 2y1)
If (5? + 7~y) €(§ +. }xiyw,?. 7\ y) for some >\O > 0,
then since f 1s explictly quas1concaue in g and x + >\0 Yis x1 + 7\1 y 3
-}xl + 7\ y; are elements of X, |

. f + f +

. %, 7\ Vs > (x )\2 y;)
Thus f R ('\ ) ) is exphcﬂ:ly quasmoncwe for )\>0 and for any i = 1, 2,

Since f is explicitly quasiconcave in %, then f (Ri ( A\) ) tends either to

.--a finite 1imit, or to + ca or - @ as \—> @60 (Theorem).

Now, if 1, < f* for some i, then there exists O <}\(,<oosuch that
f (R, N))-f(x ey L
Because x + )‘,y is an eiemen’r of X the problem has fo optlmum'

so]utwn s1nce by theorem (2) the optlmum so]utwn must be a vertex. It
' . 7

e

‘pemains to prove 3 (ii).

S1nce f is quas1concave along the infinite rays of X, then f (x +
| £(R.(0) ), } 0, i=1, 2, ...,t.
Ny min L F(R(0)) IUNRELRV SR BN

Since R (0) st is element of Vand I, > f for all i, then min
(R, (0) ), 14 R |

_S1nce the unbounded polyhedron X1s the convex huH
U £ = 2‘:)‘!& x +ZQ RJ,where
Zﬁ‘/ =1 and 6J >/ 0 hence, by the'quas1concav1ty of f in X we have
f(x)> fx foranyxe X,

" Thus the statement of step 4 holds in case 3 (ii).



A FORTRAN Program for the proposed Method.

In this section we present a computer program for the method described
in the previous section. The methed is coded jn FORTRANYIT and a number of
examples have been chosen to test the program on the INTERDATA 7/322computer,
The fo]]owﬁnglfs an‘explanation of fhe basic symbo1s used'in the program.

M - Number of constraints in system (III).

N - Number of nonbasic variables. |

NV- Upper bound for the number of vertices.

A - Real Mx(N+1) - array for the nonbasic columns and the constant column d.
JP- Pivot column

IP- Pivot row

PE- Pivot eTement

INR- Integer M - array for the current indices of the basic variables.
INC- Integer N - array for the current indices of the nonbasic variables.
MS - Integer M x NV - array for the indices of the vertices.

KGL- Number of alternate global optima

X - Real (N+M) - array for the current solution

GLV- Real array for'UEE 12?a1 value (s) of the objective function.

VIR- Real array for the \"Eef (Ry (\) ) in case of unbounded :X. \
MCL- Pointer Pointing to the most right element in the left section of MS.
MCR- Pointer pointing to the most left element in the right section of MS.

LL- Number of basic rows that can be inter changed with the currently
investigated column. LL >1 in case of ties and degener ate solutions.

DIF- Specifier assigned the value 0/1 if two examined vectors of basic i
indices are identical/different.
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NXX - Number of infihite rays..

The program includes a device indicating that incorrect estimate of
NV has been used. This could be done by simply testing the equality of the
pointers MCL and MCR. The two sections of MS will overlap, and hence NV is

incorrecte estimate of the number of vertices,when MCL becomes > MCR.
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- SBATCH
g *&&*o&..&:&&c.&&o&&o&a&e&&*&04&4&&&*&..0.&00&&&&00&&.&&**.&&.«&

€ THIS 18 A PROQ. FOR CALCULATING THE GLODBAL MIN. VALUE OF A GUABI

C AND EXPLICITLY QUABI CONCAVE FUNCTION UNDER LINEAR CONSTRAINTS.

aooOn

G n&m&mm&u&**o***u&uwwnu&um»nmun&nu&&

‘ DIMNENSION A(20, 20), MS(21, 100), HX(20). AB(20), AJ(20), X(20) .
DIMENBION AX(20), BLV{50), VIR(20)
- COMMON/C1/1DC, LL, LLX, M) N» !B‘QO)/C:/IDIF/C:/INR(EO); INC(?O)
_READ(1, 11)M: N. NV, MIT ,
11 FORMAT(1313)
XLANDA=Q. 1E+&0
Ni=N+1
READ(1, 3) ({A{I1,J),J=1,N1), i=1, M)
READ(1, 11)CINC(1), I=1,N), (INR(I): I=1, M)
.5 FORMAT (B8F10.9)
IGL=}
NX X=0
- 18T=D
- NBPs=(Q
- MCL=0
MCR=NV
PO 100 I=1. M
100 HB“:HCR)‘INR‘I)
- MCR=MCR-1
DD 6 I=1,M.
6 AB{(I)=A{I,N1)
.‘““.m’“*““"*’*ﬁ*‘*‘ﬁ***"
CALCULATE THE VALUE OF THE FUN. ﬁ'f

THE - CURRENT VERTEX
00*.&0&00&&«*@&&0&*&*&#&&&&&&&&&«

.. 200 DD 332 I=1,M

NI=INR(I)
332 X{NI)=AB(I)

DO 300 I=1,N

NI=INC{I)

' 300 X{NI1)=0.0

299 KeL=i

XC=EVCONC (X, M+N, MIT)
T S A 3 A 0
TEST THE MINI. OLQBALITY OF THE
CURRENT VALUE OF THE FUN.
3H 0 B I S 0 05 I S L S S
IF(1IGL. EQ. 1)6D TO 299 .
IF{XC. @T. 6LV(1))60 TO 553
IF(XC. EQ. 6LV{1))60 TO 199

199 GLVIKGL)=XC
KOL=KOL+1

999 NK=1

ooba

N}=0

'**GWWM*W’*“***“‘**; o

TEST THE EXISTENCE OF A

'NONPOSITIVE NONBASIC COLUNN IN

THE .CURRENTY TﬁBLEAU



o0

OO0

0(’0 .

OOnn0

Qu&#ﬁ*l&ﬁ.&uo*&»u*&a&*a*u*&*uw&u« '

DO 7 J=1, N
DO B I=si1, M
IF(ﬁ(loJ))Baﬂ.
B CONTIRUE
- NR=2
*#‘*’Q*“ﬁﬂﬁ“ﬁ*%ﬁ%#ﬁﬂﬁ.G***&*ﬁ&&ﬁ%
CALCULATE THE VALUE OF THE FUNC.
ALONO IN FINITE RAYS.
QQ**QG*.’G*&G&G#*.ﬁ“&********&#&*
DD 884 Ki=4,N - v
NIs=INR(RI) R
884 X{(MI)=AB(KI)~A{KI,J)#XLANDA
" DD 99 RI=i,N » E :
© NIsINCIKRI)
99 X{N1)=0 O
‘ Ni=INC{J)
X (NI )=XLANDA
XC=EVCONC (X, M+N, MIT)
IF(NK. EQ. 1)60 TO 77
. IF{XC.O8T. XH)60 TO 7
77 XM=XC
NU=a
7 CONTINRUE
IF(NX. EQ. 0)60 TO 14
NXX=NXX<e1
: VIR{NXX)=XM
14 JP=0
&**“&Q%Qﬁ@ﬁﬁ#ﬁ%“#*&#ﬂ*“&ﬁ*%*#****
ANALVBiS OF THE CURRENT TABLEAU
GG*Q&&Q“&O“’QG#&Qﬁﬁ.ﬁ*ﬂ#“ﬁ&ﬁ*ﬁﬁ%ﬁ
DO 15 =i, N -
Do 16 i=1, M
IA=A(T, JX)%#1. E+OD
AlsiAel, E~O0D
IF{AX. 6T. 1. E-05)60T0DL17
16 CONTINUE

353545 S0 0540 2 LM I 05 000 $3 408 35 33 8143 8140 40 41 30 36 30 48 SIS S0 4F

MOVE TO THE NEXT NONBASIC COLUMN

IF THE CURRENT ONE I8 NONPOSITIVE

T e T e e T AT T LA A A A
€0 YO 139 '
17 DD 18 1=1.M
18 AXCII®A(L, UX)
*Q#&#Q&&é&&#&%&&%#*Q&Qﬁﬂ*ﬁ*ﬁﬁ*&#&
STORE THE INDICES OF ALL VERTICES
NEIGMBORING TO THE INITIAL VERTEX
A 4400 85 000 00 0945 00211 00 61 1 21 0040 S0 01 0 40 G 4F ST S0
CALL HMIN(AX, AB)
NC=INC{JX)
IF(IST .EQ 1)60 TO 24
DO 19 I=1,LL |
MCL=MCL+1 -

PAGE



107
108
109
110
111
112
113
114
119
116
117
118
119
120
121
122
123
124
129
126
127
128
129
130
131

132
133
134
1398
136
137
138
139
140
141

142
143
144
149
146
147
148
149
150
151

152
153
154
159
156
157
158
159

OO0

OO0 0

OOO0O0

LX=IB(1)
DO 20 IN=i, M
lF(IX-LX)El.ER.EI

21 MB8(IX,MCL)=INR(IX)

60 TO 20

22 MB(IX, MCL)=NC

20 CONTINUE

19 CONTINUE

JP=JX
IP=IB(LL)
€0 TD 19
******&*“.***&***********&*******
SEARCH FOR NEW VERTICES: IF THE
INDICES CREATED FROM THE CURRENT
COLUMN 18 AMONG THE ELEMENT OF
MS JUMP TO STAT. 15, OTHERWISE,
JUMP TD STAT. 32 TO STORE THE NEW
VERTICES.
0****&.***i*********&**&***&**#**
24 DO 88 I=1,LL
LX=IB{(I)
DO 80 J=1,NV
IF{J. LE. MCR. AND. J. 6T. MCL) GO T0 80
DO 28 IX=1, M
28 MX{IX)=MB(IX,J)
CALL LOOK (MX,NC, INR,LX. M)
IF (IDIF.EQ. 0)60 TO 15
80 CONTINUE
MCL=MCL+1
*#***G**G.********************#**
TERMINATE THE PROG. IF THE NUMBER
OF VERTICES EXCEEDS THE SPACE OF
MS8.
ﬁ****&***&**i********ﬁ****&******
90 DO 89 IX=1.M
IF (MCL-MCR) 32, 31, 31
31 WRITE(1,86)
846 FORMAT (10X, 7HOVERLAP)
@0 TO 1
32 IF (IX-LX)233, 234, 233
234 MS{IX.MCL)=NC
G0 TO 89
233 MS{IX, MCL)=INR(IX)
85 CONTINUE
88 CONTINUE
JP=JX
IP=IB(LL)

15 CONTINUE
****.&**ﬁ**********ﬁ**********&**&**
TRANSFER THE CURRENT TABLEAU TO THE
ONE CORRESPONDING TO THE LAST VERTEX

STORED IN MS.
969635 3008 16 U010 06 U008 40 16 46 66 3535 48 38 36 46 3 3 S I S K SR BN

PAGE



160

161

1462
163
164

165

1466
167
168
1569
170
171

172
173
174
179
176
177
178
179
180
181

182
183
184
189
186
187
188
189
190
191
192
193
194
1939
196
197
198
199
200
201
202
203
204
209
206
207
208
209
210
211

212

OGO

GOOOOGO00

C
C

18T=4
IF(JP. EQ. 0)C0 TO 41
CALL TST(A, JP, IP, M, N1)
DD 646 I=1,H
b6 AB(IIDALT, N1)
&5 402 36 40 $5 S S SO0 €0 CH ST AL 2P S AE L {0 SR 46 db SE 3L 40 E 6 e S 4
UPDATE THE POINTERS MCL&MCR.
T 5828 45 S0 8 85 3543 EH L0 2043 40 48 S8 46 80 2 {1 4E 20 40 4R A S0 40 B dE S AL S
DO 140 I=i, M
140 MB(I, MCR)=MS{I, MCL)
MCL=MEL—1
MCR=HCR—1
10L=2
60 TO 200
41 IF(MCL.EG. 0)60 TO 1000

#***ﬁ#ﬁﬁﬂﬁ%ﬁ%%##**%ﬁ#é%#%******#*fur’
THIS PART I8 EXECUTED IF ND NEW -

VERTICES HAVE BEEN CREATED FROM
THE CURRENT TABLEAU. THE MOST
RIGHT VERTEX OF THE LEFT SECTION
OF M8 18 SELECTED AND THE
CURRENT TABLEAU IS TRANSFORMED
INTO 1IT.
***#*ﬂ'%ﬂ#&%ﬁﬁ*ﬁ****#**ﬂ'%%**-ﬁ'%%ﬁ'*

DO 144 I=1.HM

IN=INR(I)

o 8] 149 U=i, M

IF(IN-MB{(J, MCL)) 145, 144, 145
145 CONTINUE

IPa]

DO 148 IX=1.,M

MT=M8{(IX, MCL)

DO 1446 J=i,N

IF(MT-INC(J) ) 146, 147, 146
147 JP=,J)

IAmACIP, JP) &1, E+OD

Al=lAasl, E-05

IF{Al .EQ. 1.E-05)G0 TO 148

CALL TST(A, JP, IP, M, N1)

80 TD 144
146 CONTIMUE
148 CONTINUE
144 CONTINUE

DO 677 1=i.M

677 AB(I)=A{X, N1)

DO 130 I=1, M

150 M8¢ 1, HCR)=MS(I, MCL)

MCL=MCL~1
MCR=MCR—1
ioL=2
80 TO 200
B e P g

IF NO INIFINITE RAYS EXIST 60 70

PAGE



213
214
219
216
217
218
219
220
221
222
223
224
2%
226
227
228
229
230

C 1100 TO PRINT THE GLOBAL VALUE
C S0 G B GG I R S I R S S
1000 IF{NXX.EQ. 0)80 TO 1100
XC=0LV(1)
DO 111 J=1, NXX
XXC=VIR(D)
IF(XUC. LT. XC)60 TO 2000
111 CONTINUE
1100 AGL=RKOL~1
WRITE(R2, 2222)K6L, GLV (1)
2222 FORMAT(2X, I3, 'EQUAL 6L0B. OPT.
80 70 1
2000 WRITE(2, 333)XC, XXC
333 FORMAT(2X, ‘SMALLEST VALUE OF F
1. 80L. ONE OF IR=’,E14.8)
1 WRITE(2, 3333)
3333 FORMAT(2X, ‘END OF PROG. ’)
END

PAGE

OF VALUE’,E14.8, ‘FOUND’)

‘,E€14. 8, 2)X, ‘THE PROBLEM HAS NO OPT

9
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PAGE

c JRppRppaprpnppnppapppapravpsrer s L LR L L hebedabibabuiebainfniofulobuial
C EVONCE FUNCT. CALCULATES THE VALUES OF THREE FUNCTION -

C AT THE VERTCIES OF THE FEASIBLE REGION
c 352096560085 00 0148 00 00 I 3645 5 6.3 -0 35835 3645 0030 S35 4 S0 S FESIERSHA I IO SR ISR S SR

51
52
53
55
56

54
97

o8

50
100

FUNCTION EVCONC(X, ML, MIT)

DIMENSION X{(20) '

IF{MIT) 30, 51, 52

EVCONCEX (1) #X{2)# (X (3) ##2) #X (4) #X (5) ##3
€0 TO 100

IF(X(1))100, 53, 54

IF(%X{2))100, 55 56

EVCONC=-2. 0+2. O#X(3)

60 TO 100
EVCONON3.0+2.0*X(3)+(3.0*X(2)+2.0)/(X(2)+1.0)

60 TO 100

IF(X(2))100, 57, 58
EVCONC=-~3. 0#X{1)+2. 0#X(3)

Q0 TO 100 o

EVCONC=S. 0~3. 0#X (1) +2. 0#X{3)+(3. O#X(2)+2. 0)/(X(2)+1.0)

@0 TO 100 ,
EVCONC=(=(X{1)~2. 0%X(2)) #2+2. 0#X(1)+X(2)+1.)/{X(1)+3. O¥X(2)+1.0
RETURN | o

END
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C 6563600 0 300U 3000063606 9646 36 96 36 38 36 36469696 06 4646 45 45 46 46 96 96 35 98 9608

C TST

8S8UB. TRANSFORMS A SIMPLEX TABLEAU TO

C ANOTHER AND UPDATES INR & INC
C I SE MU IR0 3000006306 0636 A8 U638 28 26 36 00 36 28 06 86 4546 4646 35 4546 00 0600

15
12

13

27

SUBROUTINE TST(X,JP, IP, M,N1)
DIMENSION X(20,20) '
COMMON /C3/INR(20), INC(20)
PE=1. O/X¢IP, JP)

DO 195 I=1, M

IF(I .EQ. IP) GO TO 15

DO 7 J=i, Nt

IF(J .EQ. JP) 60 TO 7

X{I, J)=X{1, J)=X(1, JP)#X(IP, J)#PE
CONTINUE

CONTINUE

DO 12 J=i, N}

XCIP, J)=X(IP, J)#PE

DO 13 I=1,M

X<{X, JP)u=X{1, JP)#PE

X{IP, JP)=PE

IN=INR(IP)

INRCIP)=INC(JP)

INC(JP)=IN .

RETURN

END

PAGE
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14
23
22
146
17

11

18
15
24
21
19

12

C 49 IS S I R B S R R S R R RN
C MIN DETERMINES THE PIVOTAL ROW OR' ROW8S: - . -
C IN CASE OF TIE AND DEGENERATE . VERTEX. OF . T
C NONBASIC COLUMN X. EES o
C 46540030 IAE I 961640 204630 RIS S S R S

SUBROUTINE MIN(X,Y)
DIMENSION X{(20),Y(20)
COMMON /C1/1DC,LL,LLX, M: N, IB(20) -
C=1. OE+20

1DC=0

LL=0

LLX=0

DO 14 L2=1,M
IF(Y(L2))12, 18, 14
CONTINUE

LLX=1

DD 11 L2=1.,M

IF (X(L2))11,11,22
IF{Y{L2))12, 11, 16

IF (Y(L2)/X{L2)-C)17, 11, 11
Cay(L2)/%X{L2)

11B=L2

CONTINUE

LL=LL+1

IB(LL)=IIB

60 TO 12

DD 19 L2=1,M

IF (Y{(L2))12,15,19
IF(X{L2))21, 19, 23
1DC=1

LL=sLL+1

I1B(LL)=L2

CONTINUE

IF(IDC .EQ. 0)G0 TO 23
RETURN

END

PAGE

1



CTNOCBDWN

C I IS U JEE £ 85 8880 6688 35 00 60 00 S48 6 36 35 45 6600 S0 L MU0
C LOODK 8UB. TESTS THE SIMILARITY OF THE

C INDICES OF TWO VERTECES, 1T SETS DIF=0 IF
C THEY ARE THE BAME, OTHERWISE DIF=1.

0 WA I A0 038 2h S53E U8 S8 L6 88 48 8 4 36 45 36 OF S8 OB 48 0 40 45 S0 SP S SR RN 00

SUBROUTINE LOOK(MX, NC, INR, LX, M)
DIMENSICN MX(20), INR{20)
COMMDN /C2/1DIF
IDIF=0
80 FORMAT(1018)
DO S I=1,M
 IF(1-LX)9,8, 9
B N=NC
. oDTOS
9 N=INR(I)
& DD 7 IX=1,M
IF(N-MX(1X))7,5,7
7 CONTINUE
IDIF=1
e0T010
5 CONTINUE
10 RETURN
END

4



[ 95

g ds

The previous FORTRAN progvam has been uséd to run a number of pro-
blems. For some large size problems, for which théithébrﬁtﬁca] estimate of
the number of vertices exceeds the available core storage, we use the value
of NV which fits the data into the main wmemory, and in case of the overlapp-

ing of the two sections of MS we stop the program.

. The computer results of the foitowing test problems are shown below:

e 2 P S T 4w
1) Minimize £ (x;, x,, x3) = f7.(xp} # £,(rp) + 7y (x4),

2
O 0 % =0
fl(xi)‘= 23 o .
o 7 -xl- i A1> ’
(x) -5 if X, * 0
f, (X
2 2 v 2 ~SEEVEEN
3}(2 2 'H'Xz /0 .
X2 +1

subject to the constraints

2%, + x_. - 2x 5;6 .

1 2 3
x1 + 2x2 - 2§3 L7,
xl - X, L1,
Xp 2 %2 & X3 2 0. 3



The feasible region x has the vertices :

% = (0,0, 0%, &, = (1, 0, 0)t, &, = (773, 4/3,0)%, %, = (5/3, 8/3,0)%,
§5 = (0, 7/2, 0)%, and the five infinite rays:

R, = (0, 0, 0¥ + N (0, 0, 1), R, = (1, 0, 0% (o, 0, 1,

Ry = (773, 473, 0)° +X2, 2, 3)°, Ry = (5/3, 8/3, 0)° + N(2, 2, 3)",

R = (0, 7/2, 0)F + N(0, 1, 1t

The valuéS of F at the vertices are:
) = -2 F(%y) = =3,f(%3) = 4/7, £(&y) = 28/11,
f(is)»= 5.7/9. e

~

f (x

e e smr -
R T ERRRPRRE_g

Since

lefmﬂ}))=ug”fmgk))=¥£ﬂ%VM)=+w)

<hsb. ;lggo f(R3 (A) )=1,
and linn(f(R4()\) ) =3, i, e, f*=-3<KI,,i=1,2, ..., 5, .
S : 1

P
hence, 92 is tée global minimum solution with global value -3.

2) If the function f3(x3) is changed to f3(x3) =3 + x_ 1in the objective

3
function, them 1imf (R, (\) ) = - © and the problem will have no optimum
N>+ 3

solution.

2
X9 -
3) Minimize f(x;, x,) = - (xy 252) tox) v xy+l

Xp +3xy+1
subject to X1 = %, < 2 s
2%y = Sx2 <1 s
-x1+2x2<0 R
-2x1 + 3x2 -1,

x1 and Xy ; 0.



a2l -15-

The vertices are: )?1 = (—%—, O)t, ?2 = (2, 1)t , ;3 = (3, ,7)t. and >'<\4=(4,2)to:

The values of f are; f (fl)= 7/6, f()'(z) =1, f(’?S.)": 3, f(>?4)=.f1.

~~

A o .
Hence 3(‘2, X3 and X, are optimum solutions.

It worth to note that in case of quasiconcave-minimization-the set
of optimum solutiens need not be convex and there is no general procédure
for calculating it. For example, in this problem the set of optimum solu-

~

tions has the isolated point x3 and the segment 1line ()E}, ;(;)

4) The following problem has not been calculated by hatd:
P _ 3
M Minimize f (Xl’ X5 x3, x4, x5) = Xpe Xpe X3 Xge Xg
subject to
x1+x2#x3+x4+x5 <1

X, = X, = 2X +x5<L ,

1 2 3 2
x2+%x3 +x5\<2
Xy 1+x3-x4 £ 3,
x1+-2-x +x3+x4-x5\<1,
Wt &7
Xy = 2%, <4,
Zx1+2x2+x3+x4 L1,
9=2x1 -x4+x5 <5,
x1+x2-2x3-x4+x5$1,
+x2=x3-x4+.;_x5,$%_ ,
xl,xz, x3, Xy andx5 >/0



&
Eir

TEUUAL ™ eu:ﬁ "0PY. OF VALUEO. 1ooooooo:-:+oxrmn
END OF PROO.

1SEGQUAL ©LOB. OPY. OF vm.uzo ooooooooemorm
END OF PROD. P

1EQUAL OLOSB. ap'r oF wu.us-— sooooooos«owm
END OF PRDO. )

‘e LEET JALUE OF F - 300000575401 - #&UNLEM HAS NO oPT

OOF £EDG

SOL..

ONE OF [R=—. 95780%71E+53
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