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ABSTRACT

The quadratic-assignment problem is a difficult combinatorial problem
which still remains unsolved. In this study, an exact branch-and-bound pro-
cedure, which is able to produce optimal solutions for problems with twelve fa-
cilities or less, is developed. The method incorporates the concept of stepped
fathoming to reduce the effort expended in searching the decision trees. Com-
putational experience with the procedure is presented.

1. INTRODUCTION

The quadratic-assignment problem is a combinatorial problem that has been of great
interest to many researchers. The problem can be stated as follows:
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The problem can be interpreted as follows. We suppose that m facilities or objects are 10
be assigned to m locations. Here, X, is 1 if facility i is placed in location j and is 0 otherwise.
The quantity c,, is the cost of the mutual assigment of object i to location j and object k to
location /, and it is usually determined as the number of interactions u, between objects /and k
weighted by the distance from location J to location /, that is, ¢ = Uyd,. Furthermore, f, is
the fixed cost of assigning facility / to location j.

*This author’s work was supported by NSF grant #GK-38337.
tWaork done while visting North Curolina State University.
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Since Koopmans and Beckman [10] introduced the quadratic-assignment problem in the
context of locating indivisible objects, the problem has gained a great deal of popularity among
researchers, due mostly to its wide range of applications. In [16], Whitehead and Elders dis-
cussed the use of the problem in the area of building layout. In [4], Elshafei described a
quadratic-assignment algorithm that can be used in the context of hospital layout. The problem
has also been used in the fields of urban planning, control-panel layout, and wiring design in
the placement of electronic components in an assembly. For details on these applications, the
reader may refer to Hopkins [9], Dorris [3], Breuer (2], Gaschutz and Ahrens [5], and Stein-
berg [15].

Various procedures for the solution of the problem have been suggested in the literature,
including both exact and heuristic procedures. This study concerns itself with exact methods.
Currently, the available exact procedures are all of the branch-and-bound type and can be
classified into single-assignment algorithms, pair-assignment algorithms, and pair-exclusion
algorithms. Single-assignment algorithms proceed by the assignment of one unassigned facility
to a vacant location at any stage of the search process. The procedures of Gilmore (7], Graves
and Whinston [8), and Lawler [12] fall in this class. Neither Gilmore nor Lawler reported any
computational experience. Graves and Whinston compared their procedure with some existing
heuristics and provided better-quality solutions, but they did not guarantee optimality. Pair-
assignment methods proceed by simultaneous location of two facilities at two unoccupied loca-
tions. In [11], Land described a pair-assignment algorithm that first reduces the cost matrix so
that it contains a zero in each row and a zero in each column. Gavelt and Plyter [6] extended
the method of Land by tightening the computation of the lower bounds. They reported that
their algorithm took 14 min on an IBM 7044 machine to solve a problem of size m = 7 and 42
min for m = 8. Pair-exclusion algorithms proceed on the basis of a stage-by-stage exclusion of
assignments from a solution to the problem. In [14], Pierce and Crowston reported the results
for this procedure for a problem of size four facilities.

In this study, we discuss an exact branch-and-bound scheme for solving the quadratic-
assignment problem. The method is similar to that suggested by Gilmore [7], but it differs in
the computation of the lower bounds and in the branching rules. It also incorporates the con-
cept of stepped fathoming given in [1] for speeding the search of the decision tree. The
reported algorithm was able to find the optimal solution of a problem of size 12 facilities but
failed to produce exact solutions for problems of size m = 153

2. AN EXACT-SOLUTION PROCEDURE

In this section we describe a branch-and-bound solution procedure which can be used to
obtain optimal and qualified suboptimal solutions. The following notation will be used. The
location to which object i is assigned is denoted by i . Hence, the mutual cost of assigning
objects iand jis u,d,.;» + u,d,.and the fixed cost of these assignments is f,« + [~

Decision Tree and General Framework

At each stage of the algorithm, we have a set of objects that has already been assigned to
certain locations. These already assigned objects form a partial solution of the assignment prob-
lem. In order to obtain a feasible solution, that is, a complete assignment, we must find a com-
pletion of the partial solution. Rather than considering all the possible ways of completing the
partial solution, we first investigate whether the partial solution might lead to a complete solu-
tion with an objective value smaller than the best sclution that we already have. This is done
by calculating a lower bound on the cost of completing this partial solution.
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Let B be the lower bound and let C* be the cost of the best available assignment. If
B > C*then any completion of the partial solution can lead to no improvement. In this case,
the partial solution is said to be fathomed, and it is abandoned. On the other hand, if B < C*it
is worthwhile for us to pursue the partial solution by seeking to assign more objects.

Calculation of the Lower Bound

Suppose that a set of objects indexed by the set I has already been assigned to a set of
locations indexed by the set J. In particular, suppose that object i is assigned to location it A
lower bound B on the cost of this partial solution and its completion is computed as
B=C,+ C,+ C; where

(', = cost of the partial assignment;

¢, = lower bound on the cost of interaction between assigned objects and unassigned
objects plus the fixed cost of locating the unassigned objects;

'y = lower bound on the cost of interaction among the unassigned objects themselves.

Note that C, is given by

Cy=3 ik 2 Ui i

(el i€l

Here C, is the optimal cost of the following linear-assignment problem:

Minimize ¥, 3 b,x,

gl jdl
subject to ¥, x,; =1 for i € I,
i1gJ
Y x,;=1 for j € J,
gl
x, =20 (o] w3 U U ST

where b, is a bound on the cost resulting from the assignment of object / to location j. For
example, we can use
b,=rf,+ X (u, dp+u,d).
1€l

Of course, a complete solution of the linear-assignment problem can be replaced by the simpler
task of reduction of the cost matrix (b,) such that it has at least one zero in each row and each
column by subtraction of the minima of the rows from the rows, and the minima of the
columns from the resultant columns.

Two methods of computation of Cj are available. The first method relies on the ranking
of the interactions and distances as follows. Rank the interactions u,; in 4 descending order for
i j @ [ and rank the distances d,; in an ascending order for i, j € J. This results in an
ordered interaction vector and an ordered distance vector. Then Cy is the inner product of
these two vectors. In other words, we calculated ('; by matching the largest interaction among
unassigned elements to the smallest distance between unassigned locations, the second largest
interaction to the second smallest distance, and so forth. Clearly, this procedure will give
lower bound on the cost among unassigned elements.

An alternative method for finding a suitable bound Cj is the solution of a linear assign-
ment problem whose cost matrix is constructed as follows. For each unlocated element /, rank
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the interactions between it and all other unlocated elements in descending order. Similarly, for
each vacant location j, rank the distances between it and all other vacant locations in ascending
order. Then a lower bound e, on the cost of locating facility /in location jis the inner product
of the above two vectors. Thus, we find C; by solving the following linear-assignment prob-
lem:

Minimize 3, 2, €,%;

a1l
subject to 3, x,, =1 for i € I,
jaJ
Y x;=1 for j ¢ J,
1d1
x; =20 (ifare (i 22 A0 1 AL

Needless to say, the above assignment problem can be combined with the assignment problem
in the C, calculation to give Cp+ Cs. The overall lower bound B = C;+ C,+ Cj is now
available.

Continuation of the Search: Fathoming (Backward Move)

Suppose that k objects indexed by the set 1 have already been assigned to k locations
indexed by the set J. The level of the search tree is called k. A bound on the cost that results
from all completions of the current partial solution B is calculated as discussed above. If
B > C* where C*is the best known cost of a complete assignment, then the partial sclution is
fathomed. The last assignment, that is, the Ath assignment, is banned or prohibited in the hope
that this will lead to an improved completion. For example, if the kth assignment involves
placing object i, in location iy then Xii,® is forced to be zero. Here, i, is placed in the list of

unassigned objects, that is, iy is removed from /, and similarly i, is removed from the list of

unassigned locations, that is, iy is removed from J We calculate a new bound B’ in exactly the

same manner as explained above, except, of course, that the assignment x .= 1 is prohibited,
kk

by forcing b, . = o2 while we solve the linear-assignment problem. If B'is still = C* then the
l* k

partial solution of the first k — 1 assignments, while banning the assignment i, to iy, can still
lead to no improved solutions. Since the first k — 1 assignments with x .= land x .= 0
! kK k'K

lead to no improvement, then all the possibilities at level k have been exhausted, and prohibi-
tion of the assignment at level kK — 1 is now possible. This condition is called strong fathoming.
The level of the tree is thus reduced by one unit, and the assignment at level kK — 1 is prohi-
bited. If, on the other hand, the bound B’is less than C* a condition referred to as weak
fathoming, then object i, is assigned to some other unassigned location. This is discussed in
more detail in the forward move of the search. The cases of strong and weak fathoming are
depicted in Figures 1 and 2

Progress of the Search (Forward Move)

If B < C*then we must choose an object i, ,; for assignment. For example, we may
choose i,,, to be an unassigned object with maximum interactions with already assigned
objects, or choose i, to be an unassigned object with maximum interactions with the most
recently assigned object /. This object is assigned to an unassigned location iy, which is not
prohibited. This location i, ,, can be chosen in such a way that the total weight}\ed interaction

with assigned objects in minimal. For example, choose i, which minimizes Y u, ., d; +
* I
j=1

A
3, U, s OV ¢ Jsuch thaty, , =1 is not prohibited.
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Jevel -1

level k

Figurg 1. Illustration of strong fathoming.

level A-1

level &

Figure 2. Illustration of weak fathoming.

Needless to say, when the level of the tree is m, if the cost is less than C* then C*is
updated and the corresponding assignment is stored.

Termination

We have described forward and backward progress of the search tree. If the level of the
tree ever reaches value zero, then we stop. This would mean that we are currently at level one,
and are trying to backtrack. This means that all possible assignments under x . = 1 and x .

11 i’
= () have already been enumerated so that all possible ways of assignment of the m objects are
enumerated, and we stop. The stored assignment and corresponding C* give the optimal solu-

tion.

Summary of the Algorithm

We have discussed above all the details required to describe the following solution pro-
cedure of the quadratic assignment problem:
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INITIALIZATION STEP: Let the prohibited locations for object i be P(i) = ¢ for

i=1, ..., m, and let C*= e, Choose an object 1, and place it in location i. We may deter-
- m
mine i, by maximizing Y (u,; + w,) for i =1, ..., m, and we can determine i, by minimizing
j=1
H
Wild, 4 dy) for ji= 1, cicyins Leti o= {i;) and J = {iy}. Let k =1, and go to Step 1.

' GTEP 1 (Forward Move): Calculate a lower bound B on all completions of the current
partial solution. Here B = C, + C;, + C3, where €, s, and C, are calculated as discussed
above with the exception that b, = if j € P(i). If B = C* go to Step 2. Otherwise pick
i1 € [ such that 4, . = nwﬁmum [u,,& + u,pl and place i, in i, where we determine

f.k +1 by k k
HLBLDIEIEE '/’A w1/ e z “"k H1t diq' i 2 “':’AH dq.l'
A = (=
JEd

J € P
Replace / by
I U {igy)and J by J U {ig}.

If Kk = m — 1, then C, is the cost of the complete assignment. If C; < C* replace C*by
C,, store (i,i) for t =1, ..., m, replace k by m, and go to Step 2. If ¢, = C* then replace
k by mand goto Step 2. If Kk < m — 1. then replace k by k + 1 and repeat Step 1.
h

STEP 2 (Fathoming): Here i is removed from [/ and i is removed from J. Replace
P(i,) by P(i) U {ii}. Calculate a lower bound B on all completions of the partial solution x .
=l forf=1. . o ltlfande  s={0Fwheres 8= C it C,+ C;, and 8,; = == if j € PU).

% 'k

If B = C* go to Step 3. Otherwise, assign 7, to a location + € J U P(i,) such that the cost
kil k=1
Ty z;, Hypidye 8 Y, ", d. is minimized over ! ¢ J U P(i). Then i, is added to /, and
! ,"l 1 "

/

i S
1. the new i, is added to J. Go to Step 1.

STEP 3 (Strong Fathoming): Here j, . is deleted from land i, _, is deleted from J. Then
ic_, is placed in P(j_), P(i) is replaced by the empty set, and K is replaced by k—1. If
k = 0 go to Step 4, otherwise go to Step 2

STEP 4 (Termination): The search of the decision tree has been completed. The optimal
cost is C* and its corresponding assignment (e ke =1 0REE, S, is the optimal assignment.
Stop.

Note that during the initialization step an upper bound C* = co is used. As the search
progresses, C'*denotes the objective value of the best available complete assignment. Further,
P (i) represents the locations that object i cannot be assigned to. These are initialized by the
empty sets. Step 1 represents a forward step, where the level of the tree increases by one unit.
In this case the bound is less than C* hence a complete solution with an objective better than
C*is possible. Step 2 is a fathoming step, where B = C* In this case the last assignment is
prohibited. Immediately, a new bound is calculated. If the new bound is less than C* then a
forward move is made. But if the bound is still greater than or equal to C* then a strong
fathoming is made at Step 3, and the level of the tree is reduced. Of course, strong fathoming
is most desirable, since it avoids the expensive task of trying to locate object /; in a free loca-
tion other than %
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Adding New Facilities to an Existing Layout

In many applications a large number of facilities are already preassigned, and only some
new facilities are to be placed in such a way that the overall cost is minimized. In this case, the
above algorithm can be applied with a few obvious modifications in the calculations. Since the
preassigned objects and their locations will remain unchanged, these objects will always be in
the set / and their locations will always be in the set J. In the search tree, if y objects are
already assigned, we start the search by assigning more objects, that is, the level of the tree
starts at ¥ + 1. If the level of the tree ever becomes vy, then we stop.

3. SUBOPTIMAL AND OPTIMAL SOLUTIONS BY STEPPED FATHOMING

Due to the highly combinatorial nature of the problem, the task of finding an optimal
solution and then verifying its optimality within a reasonable computational time is almost
impossible in the case of large problems. Here we must resort to suboptimal solutions. The
branch-and-bound procedure itself can be used to obtain qualified suboptimal solutions. In [1],
Bazaraa and Eishafei proposed two stepped fathoming methods for obtaining controlled subop-
timal solutions in the context of branch and bound. The application of these methods for the
quadratic-assignment problem is discussed in this section.

Method 1

Recall that a partial solution is fathomed if the lower bound on all its completions is at
least as big as C* > 0, the best known objective value. Suppose that a partial solution is
fathomed if B = aC* where « € (0,1]. In this case, the partial solution is abandoned if there
is no hope that it will lead (o an objective which is better than «C* The purpose of this simple
strategy is clear. We want to fathom the partial solution quickly even if it might lead to & slight
improvement. Of course, as a new C*is found, then we fathom whenever the bound is greater
than or equal to « times the new C* The procedure continues until we cannot find a feasible
solution with an objective less than «C* Thus, we have a feasible assignment with objective
C* coupled with the statement that the optimal objective is greater than or equal to (a2

Choice of «: Of course, if « is small, then fathoming will speed up considerably, resulting in a
small computational effort. But on the other hand, the quality of the best feasible solution is
not satisfactory. We recommend values of « > 0.9, depending on the accuracy required.

Method 2

At each stage of the algorithm, we have an upper bound C* A lower bound on the
overall problem L can be devised. Rather than fathoming on C* suppose we fathom on
K=aC*+ (1 —a)L, where a € (0,1]. Since L < C* then K £ C* Two cases are possi-
ble. In the first case, we will be able to find a complete solution with objective less than K.
The objective value of this new solution becomes the new upper bound C*and the process is
repeated. In the second case, we will not be able to find such a solution. This automatically
implies that there are no solutions with objective less than K and hence K itself is the new
lower bound. The process is repeated. From this we keep narrowing the gap between the
lower and upper bounds, either by lowering the upper bound when an improved feasible assign-
ment is found or by raising the lower bound when no feasible solution with objective less than
K is found. When the difference between the lower and upper bounds is smaller than a
prescribed tolerance we stop.

Choice of «: Here a is any number in the interval (0,1]. Of course, if « is close to 1, then we
are in effect fathoming on a number very close to C* and the search will not speed up consid-
erably. On the other hand, if « is close to zero, then improvement is achieved only if we
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obtain a feasible solution very close to the overall lower bound. In this case, fathoming will be
fast, but it is likely not to obtain feasible solutions with an objective value that is less than K. If
« = 0.5 then the intervai of uncertainty in which the optimal objective value lies will be halved
at each stage.

Calculation of the Initial Overall Lower and Upper Bounds

Initial lower and upper bounds are needed to implement the above fathoming scheme. To
calculate the lower bound, first calculate a lower bound b, on the cost of locating object / 10
location Jj, as discussed in Section 2 Then a linear-assignment problem is solved to find L.
More precisely, let L be the optimal objective value of the following problem:

m m
Minimize Y Y b,x,
1=] j=1

H

subject to 2, x; =1 G
=1
n
DR e forj =1, i,
1=1
.\'”-2 0 for i, J=]. e

We can obtain an upper bound C*immediately by calculating the quadratic cost of the optimal
assignment resulting from the above problem. Now Method 2 can be initiated.

Exact Solution by Stepped Fathoming

Either of the above two methods could be slightly modified to provide optimal solutions
and still reduce the portion of the decision tree explicitly enumerated. Suppose that with any
given a the search terminales with the conclusion that there exsits no feasible solution with a
quadratic: objective value less than K, where K = «C" for the first method and K = «C* +
(1 — a) L for the second method. The search can then be repeated from the complete stored
solution whose objective value is C* with a larger value of «.

Several increasing values of «, with the last value equal to one, could be used. Obvi-
ously, for @ = 1 we would fathom if the objective value is at least equal to C* and the method
will produce an optimal solution. Even though portions of the decision tree may be repeated,
the quick fathoming would usually result in a reduction of the overall computational effort. For
further details, the reader is referred to [1].

4. COMPUTATIONAL EXPERIENCE

The experience gained with the solution procedure was in relation to the problems

reported by Nugent, Vollman, and Ruml [13]. First, we will discuss some details pertinent to
the purely computational aspects of the procedure.

Choice of «

If a small value of « is chosen, the fictitious upper bounds aC*and aC*+ (1 — a)L tend
o be tighter, and hence the search becomes faster. However, we may increase the number of
limes we restart the search from the current best complete solution with a smaller value of «.
On the other hand, if « is large then fathoming becomes weaker, and the search tends to be
lengthier but to have fewer restarts. The tradeoff is only computational and is data dependent.
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During the course of our study, we noticed that due to the features of the search pro-
cedure many successive good solutions are obtained very early in the search, and the optimum
follows suit. As a result, we have adopted the strategy of choosing a small value of « at the
beginning of the search and at a certain stage switching to a = 1. We accomplish this by speci-
fying an initial value of a and also specifying a difference between the actual upper and lower
bounds at the achievement of which « is switched to 1. If the difference is uppropriately
chosen, we will get to the stage where the upper bound is tight enough to speed up the search,
and also we will not have to restart the search once the tree is enumerated, as there is no inter-
val of uncertainty in this case. We found that the choice of « = 0.7 as a starting value was
adequate for all the problems solved. The difference between the two bounds at which we
switched to « = 1 varied from one problem to another.

Solving the Linear Assignment Problem

As was mentioned in Section 2, the lower bound can be calculated by various methods.
One procedure involves the use of a linear-assignment problem to obtain a tighter lower bound.
There is no need, however, to solve a fresh assignment problem each time a lower bound is 10
be calculated. It is possible to take any previous solution and update it according to the new

cost malrix.
Tables 1 and 2 summarize the experience with the following two codes:

QAP3: A code for an algorithm based on calculation of the lower bound C) + Cy + C;
by the matching of the ordered interaction and distance veclors as discussed in Section 2.

QAP7: A code for an algorithm buscd on calculation of the lower bound C; + C; + C;

by the solution of a linear assignment problem. Here the cost matrix is first reduced so that it
has a zero in every row and every column. If C*is greater than or equal to the bound, we
fathom. Otherwise, the complete linear-assignment problem is solved in the hope that the
lower bound can be tightened.

Total Number of Nodes: the number of nodes, both intermediate and terminal. generated
during the search.

Total Number of Moves: the number of forward and backward moves conducied during
the search.

Number of times it was necessary 10 solve an assignment problem: whenever the lower bound
calculated at any particular node by the reduction method was less than the currenl upper
bound. it was necessary to solve a linear assignment problem o improve the value of this lower
bound. Naturally, this strategy is applicable only to QAPT.

Fathoming Efficiency: the ratio between the number of times the search was not pursued.
as a result of the lower-bound test, to the total number of times the lower-bound test was

apphied.

Camparison of QAP3 and QAP7. We recall that the only difference between QAP3 and QAPT is
the method of calculation of the lower bound as shown in Section 2. In Table 1, we notice thal
(he solution times when QAP7 was used were always less than those obtained when QAP3 was

used.



TasLe 1. Summary of the Computational Experience with QAP3 and QAP7

IrPruhIcm 1 ]| Total ! Total ' No. of Times ; No. of Times it Fathoming : Value of ; Solutions }
[ Number | Size I Algorithm | Number of | Number of the LB was | was Necessary Efficicncy % | Best Solution i Time |
| | | | Nodes | Moves Calculated \! 1o Solve an AP | = 1 Obtained | (seconds)® |
L | i | i, |
| TR I I g ] 1 T i ]
i | IS ROAPI JiSE—| 38 | 43 | - 406.12 | 25/ 026 |
i S ! | - | —iL | ! 1 |
| 5 Qar7 | el B 0 | 14 WE B0 o 8oTe Ol F s sl
[ O QAP3 | Fro 00 | TanE | = 5426 | 43,/ | 1.01 |
I 4002 | ooxo 5 i : : : i i
[ | 2t oasr | 15 SHE & 18 bl 30 Lo 5204 & Fa3 e @l T w0 ]
| ; QAP3 | i WA 235 | = | 5106 | 74,/ ! RT0jE
I 4003 | gxg —— 2 — — i JE= Je g | | | -
Li l oar? | b | 62 i 40 L5890 = iy 20 &
i | QAP3 j 3| 739 1005 & = | s02s ; 1074/ T

4004 PRADA Tuch - THn | I 1 |
A e il s | i = i I | i
T QAPT | 52 I £ 235 j 141 i SaE . J0n , 96 |
E | QAP3 | 0877 292821 = | - | - D) [ 2N |
L 24005 losaiplt——— 1 | e ' ! |
[ { QAP1 | 5124 | 24496 asal L 26368 s002 | aeeyt | as0d |
| 4006 | 15%15 | QAP3 | 10071 | 40502% = | E . AT e

"On an IBM 370/1658
tNo restarting was allowed
#The search was lorced to termination

VOptimality verilied

811

194VHSTE N 'V ANV VVUVZVH 'S '
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TabLE 2. Number of Nodes Generated at the Tree Levels

119

pProtlom o N be GG : Tot:zll . Number of Nodes at Different Levels
M be gorithm M . umber o |
5 i o Nodes Jatcailigs e | 7 L8| 9 aofn]
QAP3 38 15 4 5 3 3
4001
0 O R 20 9 26l B hai2 2
QAP3 99 27 6 13 4 2 2
4002 et
s QAPT 56 18 2 4 3 3
QAP3 177 55 21 21 3 1 2
4003
QAP7 62 22 6 8 2 2 2 2
QAP3 739 231 8| 40 | 109 58 10 ]
4004 = 2
Sl e 179 52 8 17 10 8 3 3 3
QAP3 29282° 6877 12 | 125 | 866 | 3367 | 1774 | 645 | 73 | s R
4005
L QRRT 24496 5724 12 | 132 | 884 | 2539 | 1492 | 585 | 53| 18 | 3 3 3

*Decision tree has not been exhausted.
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Our observation about QAP3 is that it can face severe difficulties when the problem size
increases. For example, problem 4005 was rerun with a starting upper bound equal to the true
optimal objective value of @ = 1 in the hope that this would speed up the search. However,
we had to terminate the problem after 50,400 moves, as we noticed that 11,539 nodes were
generated but the number of nodes at various levels were:

0 4 41 358 2411 4101 3715 1000 184 8 3 3

Thus a substantial part of the tree was still Lo be searched, and the estimated time for the com-
pletion of the search was about 15 minutes on the IBM 370/165. Also, the experience with
4006 was not more encouraging. Note that both QAP3 and QAP7 found the optimal solutions
of problems 4001 through 4004 and verified optimality. QAP3 and QAP7 found the optimal
solution of problem 4005, but only QAP7 verified optimality.

We might also add that the concept of stepped fathoming was essential in the procedure.
QAP3 and QAP7 were not able to find optimal solutions to some of the reported problems
when o = 1| was used from the start of the search.
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