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Introduction

o r——r o . & -

Since the development ?f the original lot- size inventory model
in 1915. many researches was done analysing methematical models for
describing ordering poliries for one or more products Invariably,it
was assumed implicitly that once units enter in to inventory, bhey
(live) for ever or else they expire after only a single planning

period.

In most industrial environments, planning over the short run is
essentially inaffected by problems of obsoles cence, and the inifite-

lifetime assumptions is not unreasonable-

How ever, there is a significant class of problems for which
the perishable nature of the inventory cannot be ignored in thedeve-

lopin g optimal ordering policies.

In the private sector the food industry is the most solient
example of one concerned almost exclusively with inventory problems
of a perishable ;;ture: Inventory managment is required at virtually
every level of the food chain. Determining optimal planting
policies, stocking policies at inter mediate ware house locations,
and inventory policies in the retail market place are some exampels
Although many canned or frozen products may be considered as having

an essentially infinite lifetime, fresh produce, meat, etc are 11 -

Bighly perishable in nature -



There are a number of significant inventory managment problems
arising in many field such as the field of health adimistnation
that 'deal with perishable inventories- Avery interesting case is

blood banking.

The type of model we will deal with is as follows:

At the start of each period an order is placed for any number
of fresh units, which are delivered immediately.2uring the period a
random demand.D( with known probability distribution F and density ?

is either satisfied by avialable stock or back logged.

In practice it is for more realistic to allow the ordering
cost to be composed of both fixed and proportional components; that

is , it is of the form K+CY for Y > 0, and O for y=o

The purpose of other dealing of such model is to consider the
effect of the fixed charge, K, on the nature of the optimal ordering

policy funcation;

Also we deal with the problem of determining both optimal and
opproximate ordering policies for a fixed- life perisable commodity
when there is a fiwed charge or set=~ up cost for placing an order.

our motivation is to construct on (s , S) type approximation.



1= Analysis of the problem,
:For the sake of clarity, we state our assumption explicitly

1 = All orders are placed at the start of the period and received

instantly(that is, Zero lead time)
2-= Demand is successive periods are independent identically distribu-
' ted random variables with common distribution!:and densityup. in
addition, fo} > o for x M o
3 = All stock arrives new,
4 = Inventory is depleted according to a (First in,First out) policy
5> = The following are the relevant costs:

a = ordering of ¢:per unit ordered

b = set up of K per order

¢ = out dating of Q per unit that perishes.

d = shortage charged against the number of units that go short.
6 = if after m periods (m » 2) a unit has not been depleted by

demand, it must be discerded at a cost given in &(c)

f = All excess demand is back logged

We define Kﬁ = amount of stock in inventory that is scheduled
to out date in exuctily i period( or equivaleﬁtly that was aquiredim=-i
oeriod ago), The'state variable will be the vector quantity.

X - (Xm_l' Xm_a’---'. 9 xl)
we will let y be the quantity of new productt?he natation

w(dN= (s & Y :
TN = \;‘z‘zaite 5 Xi) IOI' l S k,s m



will ke also gsed, where :;\willsbe_understood to be y in this con-
text ..Mormally, the selution to a:one -period model would not take
into account the effects of ont dating since units do not expire for
m periods However, it is possible to include in an explicit way the
effect of out dating by noting that the number of units of the cur-
rent order y that will out date aftefmperiod is a random variable
that depends upon both the vactor x and the realiziétions of the
demand over the next m periods. This;is du to the fact that since
we are using a (first input - f£irst out put) depletion policy, all

of y will necessarily havé been used to satisfj demand before  any
futher order.’t is demonsirated in (3) and (4) that the expected
number of units of the current order y sheduled to out dare after

nm periods of demands is given by

y

j'f; (w , x) du . where
X ™
G x(x(n)) = % g

d
n"'l (“ + xn—l ’X(n”z) f (Xr';\-;u) d‘\)

m

‘Aar

for 2 & n

and G, (x) = F(x.)

This is generally an extremely tedious compution which would

have to be apprbached using numerical methods.

Formal analysis of the one period model will require a number of

results concerning the Gn functions their derivatives we will use



the following notation;

¢
If h is a function of an n dimensional vactor U, then h-(u)
represents the partial dewivative of h with respect to its i th
argument note that if
144 = C&Zﬁ, eoooo,d‘?’) then
n{8) 2 gZnca)

B

Also we let the functions Hn(x (n.):;
which can be computed by the recursion

n.
H ( x(n)}= {n“ 7. . , _ :
n Y nel i A xn-lﬁ'f‘.(’,'.l))f(xn .;}) du

C o Hg Gy
for2za g n g m
and Hl(xl) =F (x;l)
by differentioting both sides of the about equation with respect to

xn and integrating by ports, one obtain
(1 _xni (1), .
B2 (x(n)) = j,f_ 3’1(,\:_4- '-"x‘:;(ﬂv'-'.")) .
-2
f(xn ) du
(1
Since Hy %xl) = £(x,) > 0 , it follows Ly induction that
Hi”(x(n)‘)),c or equivalently that

Hn(x (n)) is non ~ decreasing in the variablex‘;"fhe following results



indicutes the relationship between the functions Enan‘d G, and can
be established by an induction :arqument,
Taking the f£ollowing expression

i-1

¥y (ﬁ) L =
(1 (%) du = @ (7,%) = 'ZG (x(m-j);gj(y,xcm-,a)}

o h
for 2 g1 £ m where

— -‘. = 3‘
x(n=j) (%, 19%ppoos oo Xy miel?

The left hand side of (1) represents.the rate of :change of
hte expected out dating with respect to xm-"-":i.*l' which: is on hand
- 3 .
stock (i =~1) period old.

The £irst term on the right « hand side is the rate of
change of the expecled out dating with respect to y, which is new
stock o hence one interperetation of exspression(l) is that the
expected out dating increases more rapidly in y than in each com=
ponent of x-Note that expressibn 1 also implies that for Yy 5 0
y:‘[é ‘o) gt D) @ ]e

‘ L (= (m-:,))H (34X (m=1)) > @
for 3 £ is&nn
which mean that tﬁe expected out dating increasés more.rapidly
with‘z than& l'lother words the expected number of units of

the curren'b ord.er y to out date in m period is more sensitive to
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change in the current in ventory of never stock than the older stock.

ordering
This property must be reflected in thev0ptima}'policy function as well

2 -~ A one - period Model with a set - up cosfv
] The purpose of looking at a single - period model is to dete-
rmine the effect of out dating on the structure of the optimale policy
when a fixed charge K » O is present. By substituting on expected
out dating cost to be incurred m periods, rather than merely compu-
ting the expected cost in curred in the present period, the first -
periéd the first~ period model will take explicit account 6f the
process dynamics. In approaching the K = O case in this has hion, H,
ScARf (8) demonstrates that the optimal policy for the multt period
nodel possesses all the propertieé of the optimal policy for the multi
dynamic period model. I € ssems reasonable to conjecture that this ... .
0lds when K 0 as well computational experience bears out this cour -
Jecture. The structural results obtained are then used to motivate
a suitable from for a simple approximation. Now let

X = %E;xi, which has thé usual interpretation as the total
inventory an ha;albefore ordering, A ssuming thét the cost of out
cating of y is paid for when the order is placed, the expected present

cost of ordering, set~-up holding, shortage and outstanding i

Xty d .
cy+k[(y) + Jh(x+y-'b) fit)at u-j p(t=x-y)£(t)dt+ O (;“(u,x)cl&\
e

X+ y o



. when the cost of outstanding is paid for in the '-period of the out
dating actually occurs, one .must replace © by x Q ‘in theifinal tern
since the oytdating .charge then becomes a future cost. chazan (6)

discussed this .point in details.
Now-let
L (2) f h (z=t). f(t) «at + J‘p(tuz) £(t). 4t

and- fcy+r L(x+y) + © G Cu ,x) du for y.)>
B(%59)= ? " -

L(x + P _ -her -ygo

L(z) has the usual interpretation as the expected one= period cost

of holding and shortage when Z is the inventory on hand after ordering.

When y 3) 0 , B(x,y) is merely the expected one period costs of
ordering ¥ excluding the cost of set-up. It is conuenient to extend
B(x,y) as a function of y to the entire whole line as indicated above

even though disposal will not be allowed as a policy option.

By diffeventiating, it is easy to see that B(x , y) ‘is convex in y
for all fixed vectory x. .We will denote by y (x) the value of y
that minimzes B (x,y), A necessary and: sufficient conditiom that
y(x) > O is that x <X, where x solues c+l(Z) = 0 .

£ x <% and its is aptimal to place an order, then it is
qstimal to order y(x) and incur an expected cost of

K+ B.,(x,y.(x))
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If no order is placed, then an expected cost B( x,0) is
incurred.
Define S (x) to solve: B(x,y(x) + K, s(x) 3 y(x)-
from figure (1) it is clear that s(x) & y(x) and the lollowing
eqnivalence hold because of convexity of B (x,y) in y
8(x) > o0 &> B(x,0) > B(x,y(x))-ll-)}l{
s X § o €»B(x,0) & B(x,‘y(x))-i; K

Hence it is optimal to place an order for y(x) of new
product if and only if s(x) » o . The funcation y(x) determines the
optimal 6rdér quantity, while s(x) determines the ordering reqion .

The optimal ordering function ¥y(x) possesses the following property:
m~1 '
o>y (x) Xy )"‘Qﬁx) 2~

lhis may be seen from the result of (S)
This may be interpreted as follows:

If one increases the stock on hand before ordering by one

unit ( of any age), then the optimal ordering quantity will decrease

but by less than one full unit. In addition, the optimal ordering . |,

policy function is more sensitive to changes in newer inventory than

older inventory: if one increase xi, then y(x) decreases more than

if one increases x, by the same amount whenever i > J.

We will show that the function s(x) possesses essentially the
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same structure as y(x). In order to do this we need the hollowing:(s)

(i
l1~-8 " (xsu) > 2:;.‘0:' lsi .m andforallxand/u N o
i
2 =B (xyu) =B (x4u) = c=o0 Z. G (x(ﬂ‘.‘] »
. J=l m=j
Hjcﬁ5§(mP3$

3 =035 00 3 s B @y e 3 Py 1
Depending an the smoothness of B (x,y), the function s(x) and y(x)

may be essentially parallel surfaces.-

For m =2 case, the situation is as in figy.

The ft‘xncté.ons y(x) and s(x) are pictured as the projections outs the

-

(%49 plaze 4
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i

it is interseting to compare these results with K = o case . For
K=0O the decision of whether to place an order depenent on x through
the sum x., In that case , if the total invéntory an hand entering any
period was less than x then it wa% optimal to place an order, However
when k ) o , the ordering region becomes much more complex. The
region boundary is given by the locus of points ( xeRm-t s(x) = o),

which will be a continuously.differentiable hyber- surface in Euclidan

(m-lj space.
when m=2 the state vector x and x are identical-The set( xeﬁlz s(x)=0)

consists'of éxuctly one - point whi;:h means that for the m=2 case only
there is a constant?( X, such that it is optimal to place an order

if and only if x ¢ §

Only for m = 2 close the optimal ordering region have the same form
as in the non-perishable case- it seams likely that similar hold for
the multiperiod dynamic problem,

In the Afollowing part we will show how to construct two simple

approximations and compare thier performance to the optimal policy.
3= An (s , S) approximation

The first problem encounteved when coustructing on approxi-
mation is the specification of the form of the approximate policy .

Since it is well known that an (s,S) policy is optimal for the.corres
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ponding non- perihable problem this would seem like a reasonable form
for an approximate policy.for perishable problem. There is additional
evidence for.its suitability. From (7) and (9) . a ciritcal number or
§ policy ( that is one that requires ordering to a fixed level each
period) provides an excellent approximation to the optimal order
quantity for K= 0 . That would lend to imply that the function y(x)
can be .closely approximated py SX, Since s(x) and.y(xj posses
essentiaty the same structure, s(x) can also be closely approximated
by the term s-x. The ordering region, nomely (x:s(x) > . o), becomes "
the region x ¢ s- |
Hence one obtions the (s,S) approximation:
‘fif' x <L s order to S; otherweise, do not order. Having determined
< a ;uitable form for approximeted at best we would like to obtain the
optimal(s;S) policy. However, this appears to be an extermely diff—.
cult problemﬁAFor simpler case of K=0 cohn(l0) could obtain an ex-
plicit éxpression for the statiomary distribution.of the stock level
only for the m =2 case: This computation would be substantially more
diffioult for KD O
In faet, determininglthe~optimal (sy S) policy might be more difficult
than determing the optimal policy'it se1fs
Anﬁther possibility would -be to determine an approximate (s,S)policy
Since we would be approxmating in two directions( funding a subopti=~

mel policy from a class.of suboptimal policies) . It would be laporiant

T e i -
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to compare the performance of the approximation with that of the optimal
policy . ‘
Let . Z=x + Y represent the total quantity of inventory on hand after
6rdering (; may be thpugh of as an order up- to point)g we will require
1 - The expected one = period costs of ordering. holding, shortage.
and outdating to be approximated by a separable function of the ... " ...
variables x and z
m-1 }
(Recoll x = ¥ X s
3=l
2 = The transter function, t(x,y,D) =t m,l(x,ggt»;....@...
%,(x,y;D ),
the vector of starting in ventories one period hence , when x is

the current vector of inventories, y is the order quantity, and D is

the demand in the period.

Formally. for 1l :j\§ me2

A
"t - x, . ;.f oD £ J
Jel . S I
o J=1
t (. vadtl - . J J*l
j_(.:;,' y D) y+ le D .if; Z x,¢Dg %
o . i=l Coi=l i=1
: (' - O otherwise

and tm”l(x,y:l)).e y ifD { x
I - yx D i£D > X

This form assumes full backlogging of demand.
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The rationale for the approximate trans fer functions that we
will construct is based on the fact that both the starting inventories
in each period and the number of units out -daf*-ing each period are
random variables whose distributions cunverge when following a stai=

tionary(s,S) pOllew (cohen(2) has developed rigorous orgumen'bs to

prove this for the case s = S /a

We expect that similar results should hold for K % o )

; Eog c.onvenience, we will hence forth use the notation xn,
n },,‘: to pépresent the total inventory on hand at the start of periodn.
when foilowing a stationary policy x, will form a sequence of random
variables that converge in distribution ° Since our interest is in
construc_:ting a stationary approximation, we treat xnand X, 4188 appro-

ximately identically distributed.

A
let V(z) = V (x) represents the opproximate expected one = period
costs of ordering , holding, shortage and out dating, and t(z,D)

‘represent the approximate transfer funct:.on(’ohatt is 4 B(xey s V(x) - v(x)
Me]

and 1% ti (x¢3y¢,D) = t(z,D)
optimal policies for the opproximate model will sotisfy the functional
equations o0

G (x) = 23 {k 4C z=x) + v(Z) - V(x) + & J c (‘f(Z,u))

n+l

]
for 1S n &N and ﬂ;m-l () =0
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Note that periods are numbered forward and N is the lengbh of the
planning horizon,. The acutnal for v(z) ,‘z(x) and t(z,u) will de~-
pend upon the particular approximate forms used for expected .out = ...
dating. In general, it is difficult to prove that an (s,S) policy
is optimal for a model of this form.

Scorf,s (10) original approach would require proving inductively
that V(z) - T(x) + Tc

[

the variable 2.

o+l (¢ (z,u,j)f(u) duek= konvex in

For one of our models we can show that c , (x) i® not convex for all

N

values of k=0 .

However, by using a clever device developed by veinott (jG), we
can convert this model to an equivalent one having only holding,
shortage, and-set up costs, To do so we'will need the additional
assumption that there is a return of 0 (XAQI? at the end of the
horizon, The physical signifi conce of this\assumption wiXl be
discussed rdative to the two fopms of Q(x) considered .

The total (approximate) expected discounted cost for N periods may

be written as

N
E}S_ zzl(KS (z, -x)+V(2)-V(x)-xv(x 1)}

{iﬁg(]{(g(z -x,) + V(z ) —°W(x )(f{ z eDn)))}—v(xl)

n-1
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vhich results from using the relationship

X =t (z <D ) ,
and shifting the term v (x ) back one period the sterting inventory.
l' is a fioxed constout-

Define

w(z) = v(z) ~%EG(2,0))) .
f Then the total,exjecsd,dﬁ;écnun:bed cost for the :/periods may be
. ;:rillen |

i n-1
e A
E { — o(&: J(zn— xn) + \'I(zn) -'V(xl)

n=l

. The final term beignored as it is a\constant that dose not affect the
computation of the o;é'bimal policy-

The optimal salution of the approximate model will now satisfy the

functional equations

C (x) = m:Ln { K& (z=x) + W(z) + ‘KJ Crel

We will cons:.der two different forms for the approximate one - period

(#(z.u) £(u), du

cost and transfer function.
In (9) it is demonstrated that
¥
Gm(M;x) § F" (%)
* :
where F "is m hold convolution of the one - period demand distribu-
tion . F, It follows that the expected outdatingmmay be approximated
by H(z)-H(x) where {

Hie)=

‘[f“ *(u) du for ty o
for 1t o
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from this bound it follows that
V(z) = cz+ L(z2) + @H(2) and
Aa(x) = cxX = dH(x)i*

The approximate transfer function; are obtained by using the identity:

x'n+1 =2 =D

number of units perishing in period, n . In this case we have

Xe1 = 2, D+ H(z) oz -H(z)+H (xn+l)

Since xn+1and x are respecticely opproximated distributed for longe
n, This sugges is that the approximate tranfer function satisfy the

functional equation

t(2,:D) = 2,-D -H (z) + H(4(a_, D))

This appears to be a dificult equation to solve, but since H(Zﬁ) is
likely to be small compared to Z
H(t(zn— Dn) ~ 1 (zn- Dn

and we obtain the approximation

( zn’-Dn) =2, =D = H(zn) + H (zn- Dn)
It now follows that, ignoring coustout
W(z)= ((1= & ) z+ L(z) + (@ o ¢) H(z) ~ & (G;m)fﬁ(z-u ) £(u) du,
where the approxmation °

H(ZrD-H(z)+H(t(z,D))) =~ H(z=D?)

- was again usgé in the final term-_Note that by an integration by parts

P-4
jH(z-u) £(u) du = / plmed¥ oy

] (-]
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The solvage value as sumption for this model (that there is a return
of,\\!(x., ,1) @bt the end of the horizon) correspoms/tg return of Xty *
eﬁ(ﬁm: ) at the end of the herizon if x i) ¢ and an additional cost
of - ¢ X. g if x,.,4 o since we have 1mplictely assumed that the out
dating cost is paid for when the order arrives , the term QH(x nwl
may be considered to be a return an the out dating charge on stock
that never actually ouf dates under the assumption that one order to
z each period, Chazanm: and Gol (1). show that: the expected-outdating
per period is ~bounded below by

Z2/m = a(z)

and above by z/m = b(z), vhere

a(z) = fmm x f tmx) dx-l-(z/m)('laF(z)).

and - ¢
z/m
plz) = f x£(x) axe (2/m) (1 -F(z/nd
6’—' .

it is easy to see that a (x).is the expected average demand over m

period turncuted at z /m and b(z) is the expected demand in one period

truncated at z/m. Note that by an integrationipy parts ohe-olstains.
a(z) = w;‘;-) J (1-:’mft))at |
b(2) = iju ””t) dt

Areasonable estimate of the expected outdating per period based on

an these bounds is

AA(z) = z/m = o s(a(z)+ b(2) -
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Using this approxnation for the expetteéd outdating per period, omne

obtain ;

V(z) = (z + L(z) + @u (2) ,

s(x) = =Cc X and

t(z,D) = z-D-M(z) '
It follows then in this case that igno;ing constant,

w’(z)_ = c(l= o )z + L(z) + (@+xc) u (2)

In this case the salvage value assumptiondorresponds to the usual one,
namely, that stock remaining at the end of the.horizen is solvaged at
a return of ¢ per unit and excess demand is made up'at a cost of ¢
per unit3 |
It is also easy to.see that W(z) will be convex in z so that it again
follows than an (n;s) policy will be optinal for this approximate
model, We will denote by (%§%) the stotionary salution to the system o

of equations c (%) ,
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Computational Results

Having determined two approxmate (s,S) policies, we must
compare their performence with that.of the optimal policy. Each -
(s,S) approximation-is computed . by Solving the appropriate functior .
na‘l-:‘equat:i;ans-forfcz-l“(x) and. interating until the values obtained for
(s:8.} converged{value interation)'_, policy convergence generally accu-
ned witir in less than. fornrfpericrds.,' - For convenience, we assumed that
demonds: each period were -discrete random variables and the reorder

and order: to points were integers,- .

The determination of an optimal policy we carried on :in the
following mannery If the cost of outdating. is paid. at the time the
outdating actually occuns, then the one~period expected cost of or-
dering, holding, shortage, and outdating , B(x,y) , becomes B(x,y)=

cy+ks(y) +|gx+Y-~)+o‘,J}§(x‘-t)ﬂt)dtoAn optimal policy satipie:§ the functiom

nal equations..

o
Aﬁx)‘ _-;yn;h; [B(x,y) .“&J- Aml(t(x,y_,u)f(u) du} .

Charging the outdating cost in this manner is entirely consistent
with charging it is we did in section 3.1f the term @ J (x; =t)£(t)dt

me-1
(. is replaced with o @ - J G (u,x) du above, then the itationary

policy obtained by solving :t‘or A (x) will be indetical. This point
is dicussed in detail in a recent mnote (4) . In'order’ to0 be consis=

m=}1-
tent @ must. be replaced by o¢:@ in both expressions for W(z)
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derived in the peevious sec'b.ionﬁ. We chose this approach for con =
verience only. Note that when solving a discrete version of the pro-
blem integral rigns must be wins and the minimization is over the set

y - o' Iao.olnoo

Computational experience indicat‘eﬁs'wt;;t the struture of the
policy obtained for the one - period model in section 3 is identical
to the structure of the optimal that ionary policy . Because“the
state variable has dimension m"l, the computations quickly become
umealjzable as m increases for this reason we consider only the case
m = 2(A test of a few cases with m =3 yielder results that were con-
sistent with those reported hereo)l-'i‘orr.:._m = 2 the optimal stationary
Policy is specified by a function y*(x) that is non increasing in Xo
As an example, suppose the demand distribution is geometric with mean
10 and ¢ =5,P=10,H=1,0 = 5,50, & = 0.25. for this particular case
the stationary policy obtained was the following: For xg O, ﬁx)ﬂ,‘xﬁi

and for x)/o

Xz o 1 2 3 4 5 6 7 8 9 10 1

1)1 |
V() = @+ 25 22 21 21 20 19 39.18 18 1y 17
17 o

This is certainly not an (5,8) policy’? It would be necessary

a :
that x+y (x) remain fixed in order to be bona, fide (s.S) policy . In
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this case it was necessary to solve the ;fecurrive equations for Aﬁx)
interatively for seven periods beipre policy convergence was ditoin-
ed, The approximate policjes (§gs.) ans. (sa»—sa) obtained by solving
for Cn(x) were, respetively, (3,31°) and (12,25) Each calculation
required only two periods u'ntil poiicy convergence. Even for m=2 ,
the difference in computing time is dramatic(about 5 minutes for the
exact policy versus 10 reconds.for the approximate policy on a POP
10;?? T he_ computa.tion times required for determining @he approximate
poiim;ices are essentially independent of the rize of m, will thajz for
the optimal policy increases ingnificantly. Computations foa m=3

require as much as 60 or more minutes of CPU time,

Having determined the optimal policy, Y#(‘x), and the appro -
Ximatio_nSCS'.S;) and (g;§) the expected.discounted cosfc associated with
each must be computed.in order to determine the effectiveness of each
opproxitionﬁ, The» average cost per period using the optj.mal poligy
and each approximation is ditained i_?rom an algorithn developed by
Macqueen(5) to an accurcy of 0,01 cost units per period, Rather
than report the actual costs obtaived we give the percentage diffe=
rences between each of the approximatéons and the optimal policy for

the various cases tested o These results are given in Table I °

The particular probability distributions fqr‘the one period
deménd used in the study are (1) uniform on (0, 209, (2) geometric

with parameters § = 1’II,and. (3) poisson with )\ =10 o The
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gistribution parameters are chosen so that mean demand was 10 il each
cases These particular distributions were considered in order to
compare the effects of skey]and unequal variance ( the variances are

respectively, 33,110 and 10),

An exerimental design was chosen that considered the cost
parameters (c,r,@) @totwo levels each (c=5 and c=15, r=20 , Q=5 and
&= 20) and the.test ~up cost k at three levels (k=10,k=50, and k=100)
The holding cost was h=l and the discount factor & = 0.95. This
particular design was compramise between the desirability of varying

as many parameters as possible and the limitations of computing time,

Overall, the approximation(92.Sz)based on Chazan an Gal's
bounds yielded somewhat lower expected costs, with on overage pef =
centage differance under 1% for each of the three demand distribue

_tlons and a maximum evor of 3.7% in all cases testeds The (sl.sl)
approximation performed slightly better under uniform demapd and

significantly worse under geometric and poisson demands.

The lﬁrgest evors invarially occurred for the case K = 100
although it is clear that there is a grea::;% interaction between
the cost parameters and demand distributions, ( For example, for
(cyr,@ beld fixed at (15,20,20) the evors decreased under uﬁiform )

and geometric demand and increased under poisson demand as K increas- ..

sed .



Percentage Differences Between Optimal Approximate

Costs

§

J— ]

fMean ' e3l

1,46

Cost case . Unifoem  Ceomentric:.icBoisson. ,
(crsks0) (g 83305 D8 (5 958N )P )
5,20,10,5) 0,29 | 0,72 10,9 10,96 \;0<03 10.31 |Fixed Parametecs]
16 ,20,50,5) 031§ 0,27 10,76 [0.05 2.5 | 000 |are b= 1,0 =0,95
(5,203100,53 0.0+ 0 Ok ,4,.03 2 96 !I.85,0.93
(5,40,10,5)° :0.52 | 0512 {2.15 [0.75 .0.05 |0.05
(5,40,50,5) 0.4 | 024 |4,35 |0.22 [1,15]1.15
(5 #0,100,5) 0,32 | 1.01 ;9,01 |2.32 [4.69 | 3,70
(15,20,10,5) 10,36 | 0,19 |0,24 |0,a4 [0,10 | 0,10
(15,20,50,5) i0,33 | 0,31 {0,22 |0,22 [0.28] 0,11
(15,20, 100,5);0000 0.89 | 0,28 0,03 [2.II{0.22
(15 ,4¢310,5) 0,28 0,28 | 0,91 [0.91 |[0415 | 0,00
|(15,4o,5o,5) 10411 | 0,57 |0s72 |0.10 [0.30] 0.00
| (1540,100;5) 0:15 | 0,09 (2,20 |0.80 |2,52 | 0,00
| (5:20,10,20) 1,13 | 0477 | 0465 [0,80 |0,56 | 0,56
{ (5,20,50,20) | 10,24 | 024 | 0,35 |1,32 [0,37] 0,39
[ (5,20,100;20)!0:35 | 0,35 [ 1,18 |04 |2.78[ 0,87
| 640,10,20) 0316 | 047 | 147 | 1,15 |0.51| 0,01
(5440,50420) 10526 | 0426 {139 | 0,67 |061;.0500
(5,40,100;20){0:12 | 047 [ 1,51 |0,23 |2,86| 0,24
: (15,20,10,20),0448 | 0.35 { 024 | 041 |0.02} 0,02
(15,20,50,20)30.,10 0,26 L 0,00 [0,0 l0.25] 0,25
(15420, 100,20)0@, ' 0,00 [0.51 0,00 0.53 }0.53
(15 ,40,10,20) : 0056 | 0479 |0:s99 [0.99 {0.03 | 1.23
(15 £40,50,20) ;0,26 | 0,19 [0,30 |0:05 0,10 1,10
(15 40, 100,20)0,40 | 0,07 |047 (2,02 0449 | 0449

0,34 0,72 !1,03 | 0,51




The performance of each of the approximations depends upon two face -
tors- how closely the form of an (s,s) policy approximatesithe optié
mal(s,S) policy.We assumed the optimal value of s were the largegt

values of x wich that ;%x) > o which determines suniquely nice bz2.

The optimal values of Sare estimated by insepection the function of

the §ﬁx) 2+ For example in the case listed above, x*\gix) varied fron

24k to 29 as xvaried from 00 12, Averaging these values and rounding

up we estimate the optimal s value to be 27 .

We expect that this method should yield fairly reliable estimates for

the optimal (s,5) values when m=2 + Estimates obtaived for the optim:l ’«,0)

mal (s,S) values whenm =2 .

Estimates obtained for the optimal (s,S¥ values as well as

the values obtained for (?,ﬁ) and (sa'sa) are given for each case in
Table 1I. For uniform demand both approximation yielded valies that
were consistently with in one unit of each other and were generally
within = one unit of the optimal values qf(sl,sl)oFor'geometric demand
the value of S1 overshot the optimal S in most of the cases thus accouw
nting for the evors observed in Table Ig the value of Saalso overshot

S in many cases, but the differences were rignificantly smaller. For

poissen demand, S, was consistently lower than S, while S, varied equa-

2
lly above and belows . The degree of epror was highest when K was lar-
ge relative to the other cost parametes +» Efrors in sappeored to have
~ @ more §ignificant effect than @rors in s. For example, in cost (15,

40,10,5) under geometric demand, both s, and gzundershot the optimal s
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by five uhits, but resulted in less than 1% eyror in the expected cost.
A similar overshoob#ﬂcmcurfﬁdin cost case (5,20,100,5) also .under geo-

metric demand and resulted in efroqﬁof 4,03 % and 2,9%% , respectively.

An important point to note is that whenéver;thegappfbximate‘aﬁd
optimal(s,S) values.were close, the»expectedﬁcosts&were also close.
This indicates that the form Sf an (s,8) policy is anwexggellent app~
ioximation to the more complex optimal policy ;f*i(x), .Igygeneralxboth
approximation yielded expected costs that were within 1% of the optimal
with (52,82) genarally giving better results. The largest ezrofs>can
be anticipated for long = toiled demand distributions anduiargeASet-aup
cost: For which cases, where greater accuracy is needed, testing other
values in the neighborhbod. of :¥he.approximate s value can be accompli-
shed by imﬁlating the inventory process. However the degree of preci=-
sion obtained with the approximate policies derived here should be sui-

$able for most applications,



Zable II

Values obtained for ( 8 , S)

Cost case (c,ryky0) Unifers Geomstrio ) Poisson
(3)05)) (%0 5) Omwe; 8)) (5 8 (a5,) Opd) (s 5)) (s 8.) Opels, 5)
5620,1055) Ba?)  Ghell)  U5OD (2,19) (2019 (5,1) (M) (LIS) ( 2.3)
520505 (908)  (Po19)  (9,18) BeD @) G G5 619 619"
5.:20,100,5) 6G49)  Go19)  (7419) Ga6) G25) G20 68 622 (620
G #0,10,5) (6,08) (6,9)  (17,19) (19,26) (123) @22h) (3,5) (B,5) (13,15)
6A0505) (13,19)  (13419)  (13,20) B3 (B5) (BN  (0,5) (10,5) (10,18)
5.410,100,5) (10,20) (19,19 cxo.z:z) (236) (1030) (10,27) (B8) (65 (9,22)
(15,20,10,5) (u.is_J 12,5 (0436 93) ©3) (2,8) QLB) ALB) (1m)
(15,20,50,5) @275 cs;xp ®,36) 6:5)  65) G Bu) @) (8,15)
(15,20,100,5) G o) CECINCR Colb)  GoB) Gult)  GulS) Gold)  (6018)
(15 40,10,5) Ban  Ban  02,8) (W,19) (4,19) (19,19)  (IB,4) (BoS) (13,15)
(540,505 QB @) @) W) @) 040 (0e) (0,5) (o,
(15 6684100,5) @) (9919)  (9519) Bt)  (B22) (8,200  (8pi5) (Bo19)  (8,19)
(5,120,10,20) (1,)  (11,15)  (#,15) Ba2)  9,8) (2,2) QLB) (LB) (2,%)
(5120,50,20) @5) @) (8,36 Golb) GolS) GuB)  (Bo)  (T5)  (B15)
(5120,100,20) Can  GaD B8 @6)  GuS) @) (o15) Ge19) (6318
(540,10,20) WD (B (B (h8) AT G99 (B (3,15) (3,5
5.10,80,20) W) W) 208 (0,200 (5,29) (10038) (10,0) (10,5) (10,15)"
(5.410,100,20) O a9 9.8 BaD (09 B9 ) (Gu8)  (By8)
(18,20,10,20) (10,8) GLB)  (Bu8) () (79) (B0 (1) QLB (11,13
(15,20,50,20) (6,)  (7415)  (74W) Gal) G  GaD" (LB @.B)  (8,M)
(15 ,20,100,20) God)  G5) G50 WLB). AaD)  Ga’  G,15) Ga5)  Gan’
(1540,10,20) (B,36) (#,1) (16,15 (L,15) (11,15) (7,7) ((2,%) (1B,5) (13,1)
" (15 #0,450420) (10,16) (11,17) (12,37) (Be18) (8,35) (9,15) Ge¥#)  (9,3) (10,14)
(1550,100;20) Be16) 1)  (9318) Gal?)  (5419) (6,38  (8,15) (8,15) (8,16)

"Hotes The o}tml values ef sare, in gensral enly estimatess The cases where they are ereact are vorked with an

esterisk ,
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