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Introduction:

In the following we deal with parallel
- Planning strategies for the development of a new item., Let us assume

that several proposals for developping the new items are avaialable,

Usually one is interested to choose the best of these proposals
with respect to some criterion, But it may happen that the data available,
at this point of the development process are very inaccurate and uncertain

and therefore unreliable,

For example a proposal promising low costs and low time to bring
the project to the end may turn out to be very expensive after its comple-
tion. In such sitnations a wr@ng decision ﬁay be avioded by pursuing a
parallel path approach. Several, say m, bf the proposals are pursued to
a review-point at which point the best project is selected “and brought to

completion while the @ther still remaining approaches are stopped.,

This is the simplest model of parallel path-approach; general$za~
tion to several review points, however, are possible and done in the litera-
ture. (See Marschak' (3) ). .

It is the purpose of this paper to answer the following question:
How much must the uncertainty at the review point be reduced in order
that a parallel-approach is at all warth while to be pursued? A lower

bound on the variation of the cost-estimate is obtained in order that



a parallel-approach with m proposals to start at the beginning of the
project may be worthwhile at all, it is shown that this lower bound is

attaned only if the cost estimates are discrets, allowing only two values.

1= A General Model

Let us have a set {1,2,...3 of Research and development approaches
which can start at a point t, a set F = {il, j'2, ves im} of m approa-
ches of them are pursued to a review - point t +0 , at which point the
best project, i.e. that project having the smallest total money and time
cost estimate is selected and brought to the end while the other remain-

ing projects are stopped.

In order that such a procedure can work the cost-estimate must in
some sense be consistent with the actual costs, i.e., there must be some
relationship between cost-estimators and actual costs. This relationship

is unbaisedness and is formulated as follows.

L be the total time and money-cost that finally is obtained by

K
et Rt +@

bringing proposal i from review-point t + @ to completion and let moreover

Kéiia be the total time and money-estimate obtained at the point t +@ .

We again assume that Kilia is an unbaised estimator of Kili is an

unbaised estimator of Ki,t-n-e (2) » (3) i.e., that



(i) (1)
i,040 7 Biye )= Kile )

(1) E(K
This assumption may seem strange since often in practice cost-
estimates are much lower than actual cost. To make assumption (4) more

realistic it may be assumed that

(0 B e/ K = i)

where g is a monotonic non-decreasing function, e.g. g(x) = 3x

It dose not matter in our analysis if we replace assumption (1) by the
x(3)

assumption (1) by the assumption (f3 Tasi,
t+e

is replaced by g(K;*ﬁ)

when ever it occurs.

Let [” be a set of approaches and let Wj be the money cost which is
necessary to bring approaches 351" to reyiew point t +.8, IF C is the
total time and money.

- Cost which is necessary to follow a parallel-approach with approach-set

/‘1 , then under assumption (1),

t
(2) E(C ) = : E(W*) = E (min K(:)t--e)

xer ; 8ér &

Indeed, let

b’oEr\ be such that

K(ro) = min K( & )
t+8 t+©

sep



then by (1) s

@ 2 8 Tyte %)
= E(W )+ B (K‘
ér “e
= Z E(w ) + B(nin K
ser ° rep P

If P = (11960000 ’ ) and ’ .
(S) FP (x) -Filonoo i (x> = P( m {Kt‘l'e > xj )
then by using (4) (see Marochak (3§ we get
6) E(c)= " E(w)+ fn-(x) éx
suppose that the projects are ordersd acsording +o incrsasing expe-
cted looking costs , i~es
B (w £ E(wr)(..... - e

We nov make the following assumption , The distributions of the ﬁ(i;
t+
are consistent with the value of E(wi) ° More precisely :

«i’ E(W, ) > | E(W ) ¢ we require that there is 2 higher proba-

bility that Ku', 40 exceed.s a given value x than that K(‘) exceeds the

value of x and this should hold hor any x, given an arbitrary set of

altei'native approaches.

Definition (4) The given set of approaches is said to have a mono =
tonous closs of distribution funoctlon if for any subset of approaches

[fand pair (i, J) , i; j¢ra.nd any real number x

rs (¥)
(PR3 (k"‘i) Y x ‘n “_e yx) P P(ﬁg) x l n 5 6>x)
, r, +
, if i J
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Now under the assumptiqns (1) and (7) we have
a) E(}-vi P E(crvvj) ;
-for any subset of approaches i1 )]

b) [" {1f is the optimal set of approaches to be pursued if

(&J?& élvgdﬁuxcfo%)

(e) If there. i.cs, a lost intéger m > 2 such that
B¢ [ PE® ¢ o, mel 0 |
m’ =y 8 A E Y o ax
: ’ 1=1 +t6
then /7= (1,2, sesey m) is the optimal set of approaches to be
persued, From a we see that : under the monotonity assumption it
is always warthwhile to substitute a given approach by an approach

Possessing a lower cosf estimate $ by such a substitution in the

total expected time ang money cost is not increases.

2 = Upper and lower bo\lnﬂs for the optimal number of approaches to

be persued .

in this section - simplify the genepal model of the pre =
vious seotion by assuming that the cost estimates K'WG are sto=
chastically independent randenm variables + Under this assumption
the optimality= criterion simplifies to

o>
(m) Mm=1 (1)
9 P(k™ & x) . (1 =p(K $ %)) dx > B )
©) .j ¢ wex AL o 6 . 25

or we define



D
@) 7, = P(ky,g¢

%o L
(11) ! F_(x) }ﬁ 1 (1-Fi(x))dg > B @)
The monotonity = assumption implies that
() "1-F(x) ¢ 1-F (@) 5 12142, 0000 m=1

We now make the rather realistic assumption that all considered ran-

dom variables (cost- estimates K(i; are restricted to a finite inter-
40
val(!&“'z{M ) 1. e that

(3) POI, < K(ﬁe $ M)=1,f=1,2,a..

This implies that
Fo(x)

o it X M

n

1

and F m(x) 1 if x 3 Ma

using this and (12) uo Q ; we get from (li)
B uy) <fF G pel | -y ax
() P
Fm(x) . QF (x) ax

it is necessary heir to given the following well known facts.
1 = The function '

(15) £(p) = p (1=p) o& pg 1
is monotonously increasing for P & (o, m(m + 1)'1) and monotonously

decreasing for pe¢ (m(m + 1 )"1 e 1) 10



mex £(p) =£(m_) Ap =(1+1 )% 1
O¢ngl m+l m I+m
(18) =@+l @D 4

n n

(17) (1) F g Apy ¢ (me)

2 him ﬁ‘Am: e-'
T X -]

[ -
wiere e = ljm( 1+ 1) "= Y 1=2,71818
m mi

B
J 11

. 0
Y s
that nmeans ’ if the Kt‘le k-—' X 2 g Oeeco

are stochastically independant random variables and p(ﬂls K(x;\( (MZ) =1
t+ Lo
then a necessary condition that there exist distribution function ..

F].(X)’ esee Fa(x) such that

- o(x 1
(18) Fi(x) = p(KH; £ x) \<Fi

x)

~

G = p (K4
t.4+9

for i==2.3,...mandr= 1o 25 eee M
is the op'i‘.im:al approaches to be pual*sued is that
(19) My =My ) B @) (A )

@) 1im
. M-poo
which yleld to the approximation

' -l - -

@) 6, =M (B (D™ y a ) F(n é") e

where .
am=(Am_l) “l.n (14 (ma=1)"H)"

and am € (m=l)a , me )

(#l) (Lo 3)'we) =g
n

To study the problem of (19) in the case of
- -1 '
ua -M = (,Am_l) B (v )

4
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it is necessary to make the more stnngent assumption that all K(i) )
are.not only independ.ent but also have all the some distribution F(x)
but we consider K + 1 = class = parallel - planning models i’ °-8
we assume that F{x;}belonge to a rondom variable X such that

Nl < N2< voeese € Nk+1 and p (x =Ni)

=P:'L o 1 =1y eeee o kt 1 where of course
P, >0,1¢igk+1land
l

~let , '

0(21) Pi=1- EPj i=1,2, es e ’K

_ g1

- Then F (x) is equal to 1 =P i in the inteval g0 N 14 l(Evidently

N1=Mland. MZ =Nk+ 1

. S50 we get from ’
(22) < M (1 -P,) P® E (W)
D M ?5, 2 n
is=l, ,
where Mi= Ni + -Ni 9 1= 1 ”2. ecce ¢ k
o*

- % lr
let us assume that Ml’ 29 eecceee Mk“l

. , : .‘,
as well as Pl' eccss 9 Pk are given wha’ is ’che lowestvalue of Mk.

' such that we can £ind = real rumber Pk.> o ( or equvalently a Pr such

o that oy £ Fe1 ) with
2 - 1
Jrm a-re "t B (wp

1



--%0 hold ? Evidently

- m=1
‘ kS Py
P if P 3> (- 1)"ln
-1 K-1 7
iy Me]l -1
(1 =P ) P7" 4 Py € (@=1)""m
k=1
So the stated problem has a solution if and only if
k =1
»® m-] ¥ .
’ i=l
o " kel "
Me]
@) Mom Gy ) Y EOY) - T M Gep) B3
193¢ k=l “‘ = 1
R M=l ;
(26) My B - TN () B3N (i, o)
# ' i=1
= Mk > min
k * 1 k=1
@My = M, = oMy 2 (ay (B ) )THEW ). Y M
: . i=l i=1l
el
(B (P y) = =2 (™)
. s ¥ * * .
SPGGZ‘.&‘.]-;" i Ml = Ma_??ooooooeeook;-'-lmk’ pin we gev
% : ' Me] (=]
M=EW) (b Pp_q) + z:_(l =p;) Pi )
i=1l
aad " k=1
’ m=l (=1
@) M, =M, 5 kM pomin KB W) Chpfp, ¢+ Y \1-p:,.)1:»i )
: . i=1
2.6

iL K =2 vwe got



2BV ) (A, + P (1 - Pyt

€

P sm"l

By

1
B, (P, = P)™)
v it Pl y n |
(29) will be plotted as a function of P, form =1 and B (Wm) =1

’ later on o
it ,may also happen that a certain strategy ‘m¢g will never apply
‘ * X% * B o - . .
for SiV?n values Of Ml ’ M2. scos Mk"l ’ Pl' Pa’ eeooce Pk"l gecause
the strategy m =m + 1 is’ alauys superior to’ the strategy m =my .

what ever may be thepva.lue of Pk," This can happen if an ohly if

-1

L I me ¥* : my
Go), M, (1P Pk >,E(Wm° 1 - L M, (1-2,) Pi
i=1
Iel‘or allt" Pk $ P 3
Specialiy Pk =0 impli;sl
E (4 ) - -hf(l-P)m" 0
GL mg +1 ' Z i i pi <€
- i =1

(29) vecomes °
. . kel

% -
G) My (¥ Qe P OB )
. i=l
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and thus
(G3) My =M, = gk-l) Mo y (e=1) B (0 o)
¢ L a-r) Gl L ow
isl

* Xk
if more over M:Mk,too and K =2 , we get

Gh) Mg =81 (B (W 1)) ) 2 .M )/Z(P (1= #]3 )L

it will be also plotted as a function of P. for m = 1 .

1l
For large m(and if P 1 P ¢ m+1) in general it is twic the

mindmum = value of My =M, for which the stragtegy m°+|w111 apply

at all; while (34) giwes the minimum values of M, - M, for which no

strategy m B, will applye Our computions and tables will also

reveal to tais situation,

3 = 1 The computation of probability intervals corresponding to give
_optimal svrategies .

>*
Given a certain set of values M

1’ , scaesse Mk' K
’ Pl ’ 2, vecee Pk 1 the question may arise how the probability

in tervals for Pk can compuied for which a given stra’begy m) 2is

optimal, The intervali2d which m = 1 is the optimal strategy ié then
evidently the interval (o , Pk—l) - U I s if I, denote the

n=2
interval in which stratsgy m is optimaly), We have evidently

G5) B =P, -P



“implying Pk st -1

By (24) for the given values, Pkand hence P, optimal if m is

k

the last integer such that k=1

*
6o a-Pprty N GE)- T
i=
n-1 x
(L=P)P, ") =¥,

x o
If N n beppens to be smaller or equal to zero, then any Pkg Pk—l

satisfies the inequality (36), let us denote by J, the set of values
Pﬁ £ Pk—l such that inequality (36) is met .

m .
3£ J, = { ayb) , then evidently J = (P

\
k-1 = ¥ Py =)

is the P'k- interval satisfying - ($6) '+ Then

(o) lo) .
J ° -—.-_3 Jm-l-l and
= gCo)_ 5 (o)
G I =3%-30

We know :Erom the last paragraph that there is a lower bound
for N in order that J(°) #¢ , namely that

: * A _, 1P _. (@-1)n
8 Ny ehy P = ) oaer ]
gep C1-p) if P, & (m-1) T
£ N ¢ 0 then evidently J = (0, P, _, ),
J(O)- (o, P, .) = (o 1—k§ P.)
m o Y Tkeld T MY TS i

" that N h (P, _.)
now let us assume that o ¢N < b (P .,
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ok (0)
if N =nh (Pk_l) s then Pk = Pk 1 is the only element of J

o m
in which case the k+l class= parallel planning = model‘dagenerates,

to a k = class~- parallel-.planding model) We now make use of the
results of the lost poraggraph, nomely that g ,(p)= (l-P)D
is monoto wsly increasing in (0% m l(m-l) and tenoteneusly inereasing
in(ﬁ m-1) . m ) ,

T he maximdm'is at P = (m-l) m~' a saddle = point at (m=2) m

(f)
3;n-lf\.

Fig % = Bitustion A -



Q)

X
m-\

An-ll
A
m

() p $ f
" Fig o'~ Situation’h b !
If o <N ¢h (P, _,) o there will exist = digram and analysis of g _,(p)
w

show it & two values Pk 1 Pk’2 such that Pk 1 < 1”1"2 and there

m—l * m-l *
fore (1-Pk,2) (Pk 20 = ArPy 1) (Pk 1) N thus
Thus - %
e
il'Pk) P > W iipk e Pk.l' Pk,a) .
N < b(P _, implies Pk 1 <Py

In situation A (fig 1) P k 2 > Pra1 hence

P (o)
(39) Jm- (P k,l 9 Pk-l) Jm
In situation B (lig 2)

e

= 0y Py = Py,n)

L
Pk.2 > Pk—l and hence

_ » . (02 » - %
@) I, = (P g aPypa) s Ip= By =Froe Fig P,1)

Ih general we have

%
1) J = (P . min (P, PT{_QD

»
(42) J(°)- (P, =min( Py 2 ' 1>k RER I Pk.l)

= (max (O. k‘a ? Pk 1 P*k_l )



3 - 2_Gomputing procedure

%
Compute N n starting withm = 2 and J (o) according to
? ) n

_ *
¢ iz Nm > hm(Pk-l)

at
(o) 2N =h (P

k-l)
@3) 9 ) max (o, P
mn

M : %
k-1 = Pi,2) 0 Py = Piey)
o N b (p

m k-l)

(o, Pk—l)

A% *
where Pk 1 denotes the smaller and Pk 2 denotes the larger of the
9 9

two roots of the eauation Pm"]'(l-P) = N _, provided
' % ) - n
o N . , /
go to m¢l , £ Jm °)=¢ stop the compution .
If m = m'% o then

: _ ©
A e T
0 (o 7
szm- Mes] m=2'3 . .'....’““b;."a
m;l '
I, = (9. Py) - U Ig
y=2

The only thing that now must bé still done is the compution of the

-l,. »*
two roots of the equation P™ 1(1—9) = Pm provided
*
° &L h‘m £ Am-l
This problem will be solved by considening the followiﬂg"thearﬁ' &)
a) let



-m-

Ape = 8y m-2‘) 2™ =2 m-ltl-e m-]")é

and )

Bpet v
- -1 * 3
Po=(mel)m™"if &) > N > A

-1, *
p°=(m-e)m :.£o<Nm <

and more over

R T
' o = Oy 1 ’ 2 » sove Then

-

‘ 3%
Pn ) Pm-l and l-imPn = Pl
* : _ n_)&
where Pl is the smaller of +the two roots of the equation

Me] %
P (1 -P) =Nm

A -l
(b) let Poz(m -l)m and

A ¥ A (ne
(4") Pn“'l =1 'Nm Pn"') ') " n= o, 1, 2' esccne
then . '

A PN N x

P » P and lin P. =P,, :

¢l # "n >0 & 2 ”

the la.rge_r’of!thev two roots of the 'eguation pm"]'(l -p) - Yo

de tailed proof in (1)

We have the following error bounds for a : : ~. 1

% .
‘;“f (P 1Py by ()
i 9= (uel) u >
Pa=F (?m-l =P )by () a2
Po’:: (n =2) m-l
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Where
-1
B (P) =(1 ~P) (n-1) =m £) |
B (P = ( 1: p:"j(( mel ) = mPnS"l
Tl =]
« BTN
For (b)
[V} A A A
Fa =%, (Ppy=Pp) by (P
Where ’ '

A A A
B ) = Pn(m P~ m--l))"1

4 = Grophical and Numerical Illustrations ... ...) .~
.In (20) it had been shown that a parallel -~ approach with m
approaches pursued to review = point can be optimal strategy if

-1
Oy 1) (B W, N7y oy =1 2 ay=1
where !&2 - M ,is the variation of the cost - estimate and E(wy )

0
the expected cost of carrying approach m to the review = point .

more over, we know that a1 € (m=1) eme ) «

In (table 1 )a and (m_ = 1) e as well as (mg =1 ) e and m €
A Mg (o] 2— Q:

are listed it turns out that evén for mg = 2 the error between

a () and (mg = 1) e is less than 2 , It may also be noted that
2e :

m
(o)

computing an by logarith was according to the formula .
o
amo = exp ( molog m, = ( m, = 1) log ( m, - 1)



It has shown in section 2 that if
am5 = (MA - Ml ) / E ( wm) s then there is only one dist =
ribution functiof F (x) , concentrated in (Ml’ M2 ) , such that-

m = Mg can be the optimal number of approaches to be pursued, nomely

the distribution which takes as values only X = Ml( with probability

1

—1 - " " : Gt - -1
m,~") and X =M, ( with probability 1 = m,"= ( m, =1 )m o

if this very sPeéial two class problem ean be excluded, then there
must be a much highgr value of (Ma - Ml) E (wmo) in order that m=ng
can act as optimal strategy . ‘ |

To win a further insight insight into the nadture of this problem, let
us consider that we have an equidistant three - class pé.rallel = ste

rategy model, i, e that P (x = Ml) = Pl’ P(x= M1+(M2 - Ml) 12 ) = P2

P (x =Ma) E 3 Pl - Pa, where
PpoF 2 '
I£ - Pl > o is given then necessary for the existence of some

Pa ), © such that m = mg may act as optimal stravegy is that sea(29)

L Lo _ - \ _p yfe=l
[N \ " ) .V/ 7 A . - :,‘) ,,,' » e o/ ,2°m°<l+am°(pl(1 Pl) . -1

i£P gm -1
-1 =0
@) (E (Wmo)) M, - Ml) p hmo(Pl) m, ~L\=l
S i | (P, (1 =Py)7°™)
if Pl > mo-l

Note that if P, ) mo"land the equality - sign bolds in (47) , then

P2 = 0 is the only value meeting the required coaditiown, so that the

»



ame (mo-l) . " amo ‘ rglat:lvo
e eep o

", . o : : - A . 3
2 28 & 34999 4,077 5 436 2%

3 5.436 " 65 64735 647% 8,154 1%

b 8,154 94BL 9,575 9,51 10872 3%

5 10,872 10,872 12,095 12,231 B.950 2%

6 BS5%  1BSW U3 14,949 16 308 13%
7 16,308 | 16308 ‘17,64 17,667 19,026 © 0,9%
8 19,026 ! 20371 20,375 20,385 21,74k 047%
9 21,74 23,091 23,07 23,103 24 f162 0,5%
10 24462 25,811 25,835 25,821 27,180 0%
11 27,180 28531 28,539 é8.535 é9,;898 0,3%

[

wabl@ 13 Minimal aumbex of- (&2 H,)E W ). ratioef cost-estmtas na.ngo and expec'bed inspection

cesty that is mc@ssiz-y in erdor B=mn can be the opticnal number of approaches to be
persued [
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preblem degenerates in this case te a two class problem, if P1 - 1,
then hIll (By) —=°

This is quite clasr because if Pl-l, then we have a one=class problem
in which all uncertainly is removed and seme in this case there will |

be ne need for aparallel-strategy h (P.) has minimum at P,=a Lyith

©

minimim value b er)=
m, o 0

But the corres ponding value of Py, if EW Y M, =¥M) =u is P

1 = n_" implying
P(x =H2) =0 »

So the’problém degenates ti a two-class problem, The some holds if

Al 2
P.=e: valus h \u)”a -, ak RSV
1 n my

distribution is concentrated in ((Ml = Mz) [ 2= o Ma))=(M1 ) and

AT e s
IoRsLy Correc

80 (M - Ml)/E (H )) & must hold in erder that m= m, can act as
Mo
optimﬁl strategy.

1

As we can see from (fig 3) hm (Pl) has been pletted for my =2
" ° 2
alse the curve I, is plotted this curve is equal te

“8) 1 (P.) = 2(; (1. = p yledyal
: w1 =4 g ot 1
and in minimal number of (Ma- Ml)/ E (Hm )) given Pl’ in ordexr that
°
the strategym =m = 1 will be never applied as optimal sriategy

what ever is the value of P,.

]

If (Ma-nl) / B (Hma? >, 1m°(P1) then either m =m_ or m = m+ 1

m o+ 2 tesseena
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will be applied as aptimal strategy,

If P,y u_" then I_ ®)/ n (P)=2
To

If Plc m this rario will be much 1arger and appreoach infinity if Pl

approach zero. This is quite clear for if P

1 -
the problem again degearates to a twe- class problem
25N ' M;mo_l
Mz 1

906 d“'z GUJ 93‘{ a-§ Q-}'
(Fi33)

O-?O
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Move matevial can be feund in (4)
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