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BSTRACT

and during computational procedure
P problems reduction prior to optimal solutions finding/fis dis-

-ussed in this paper. ,So, the .notions of redundant constra:.nts
5§ . 2 3/ o conditionall‘y redundant constvaints and conditionally
redundant variablés :/§4/ are.introduced,-
ledundant constraints’ are defined as these not changing feasible
solutions set X when removed from its definition. The constraints -
of the second .type are.-those, 'which are mot active in optimal sO=
utions set 350 of LP problem, |
3y conditionally redundant ‘variables we understand these having
ero value 'in op'bimal solution. Removal of the redundant variables
mnd constraints from further considerations does no‘b e:ffec'b optimal
solution choice, ‘but frequently leads to a significant reduction
»>f LP problem size. . o ,

In §§ 2,3 ' sufficient conditions for redundant constraints and
in §4 for conditionally redundant constraints and variables detec~

tion are discussed. ,
Two- methods ‘of - LP problems reduction presented in [7] \'_cj ] are

anelysed as well, -
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: Speaking about the LP problems reduction we have. On mind
- , the diminution ‘of problem size’ pr:l.or t0: numerioal prooedure
. leading to optimal solution, it one exists. By the size‘of
o LP prob].em we understand the. number of sigziiﬁ.cant constrai

L /i.e. all constraints different “rom nonnegativity conditi

~© occupied b

i deﬂn:lng feasible solutions set 36 and the pumber of decj

13

B variables in this pro'blem. o i
It :l.s wel‘.l. known that too big m:mber o:t the oonstraints do:l
;:set 3{ is inconvenient when loold.ng £or optimal solutiona
::'beoause 1t lengthens computing time and efiects accuracy (
- the pesults. G:Lven an’ ob;]eotive funct:l.on and a type of
"'Optimization /maximization or minimi.za_ti_on/ ,-only some con
- tpraints defining the set X , deﬁné' also optimal solutio
: set X, (xoc X ) Neglecting LP. conatra:l.nts for some of th
‘-'-.:f not deﬁning X, set can reasonably shorten the computati
| work leading to xo detemination. S

-='_'.Ehe' special place among all constrain'bs de:t‘imng set&

y ‘these which do no'c influence 3' e whi le removcd

1/ This report is, in a large part, based on papera preser
by the author and others ‘at SGPiS. seminar on "Numerical
thods of large scale optimization models" chaired by I

. W,Grabowski. The seminar was sponaored by the Institul
E‘:E’:I.arm:l.ng at the Council of Mi.nisters, and its results \

- . | published in /6/. Some unpublished theorems and notion:
) troduced by dr We Dubnicld. are used in this report as



the problem.‘ Such constraints we: oall redundant, We s‘hall

' introduce the notion of conditionall' redundant constraints

iies the oonstraints of X not determining the ‘set" 36

. Figure 1

Fig. 1 presents set X of some LP problem, where objective -
function is maximized. Constraints of this problem, numbered )
4 and &4 are redundant. Conditionally redundant are oonstraints
numbered .1, 3, 5, Te : -

Let’s assume that LP problem will he solved by some speci-ﬁo
type of simplex method. In this method nonnegativity oo:gditions

are’ automatically satis:t‘i ed, so they" ar ’:_lﬁznot 1ntroduced :.nto

computem et,orage, amd they do not 1noreese the size af LP 1:»:-95--_]'{j

b?t.emo -

4 o

'
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Considering redundant or conditionally redundant oonstrainta,
o We shall take 1nto aecount all buf. nonnegativity conditions.
In some cases’ nonnegativity conditions oan plgy impor'hant role
in the determination of X or X, therefore it is, reflec
ted in the notion of redundant or oonditionally redundant va-
riable, ‘ ' ' ' '

2; Redundant 1negua11ties

A. Our further considerations will deal wi‘l:h the following LP

.

problem ’ formulated here in canonioal form.' :

R g b . - “
4. L . ' &

* -

€x —> omax | /a/
Sete o - -

@ X éb, (“: \joeey ) o 2/

20, oy

where X0, du,,, are vectors 1n Rn; .

- Canonical formulation of LP problem is- equivalent to standard
"and mixed forms, what results .

from the equivalenoe of transi‘ormations. -

Q'.,X(Sb\. = & X( + Xvwv = b | - "
and - | P -
: X < by
a-W=b;=<&*<b ) I

Writing /1] = /3/ form, we want to stress that in initial form

.‘\.

written as. inequalities. It will e shown rurther, that &1£2&?&
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»rules govern redundancy determination in case of inequalities; ‘-
than in oase of equations. The following notation results from
11/ - /3/ formulation. g

RT {&\xeR %> 0} 3 {42,.,.,“3 J/u {“}
36={y'l&_e$2,,,') @i % < bi (&63),}, |
36/,( {x(\)kéQ ) QX < by (i<§<3/u3},’
| A_S ={x|xe FZ* , x < by }an.dkeﬂ,
'?Ic."::{‘?"‘a]’kéiRﬂ’kéxfk S‘f &> |

From the above definitions it follows ‘tmmediately:
efinition J;v ‘
lConstraint o of system ’/12/'1sgre.dundant in x g
x5 | |
From the def,1 and relation / 5/ the following holdss

Theorem 1

w

‘I‘he following relations:
/i/ x/k c Sk )
/1] ¥, C X >
1113) Xy = >,

| can- be: used in the redundancy definition of k" constraint, beca-

use they are mutually equivalent.



In the definition of the set . , it is convenient to intro-
duce the notion opposite to redundant constraint, i.e. assen-;
hal constraint,  We assume that. the set 35 will e changed by

the removal of a essetﬂ:al .constraint.

Definition 2
l'l‘he constraint "k" in system /2/ is csscb.tzal in 'X, ’ iff

o . :¥;kqf sk“ ¥ _

‘From the definition 1 ’ theorem 1 a,nd definition-_:

. Theorem 2 ' .' | L e

'The following relat:l.ons.

/;/ X/ qf SK L e e
/u/ X, # X, o ‘
sl Ty o4 ¢, P - ‘

‘can be used in the number- “k" 3al constraint definition

L 'because they are mutually equivalent.:e

"'k“ constraint in system /2/ ig g f

;g.’ Jbb
>f<>a> t>

{ l2/ Theorem 3. as well as necessary conditien in: theorem 4 -
- formulated end proved by’ w.nubxucm ‘at SGPiS seminar a,nd %hey?‘f’
= will be published. Proof of the suffioient conditi on in theo-
 rem A is given by the author, as a modification of this con-
. dition, as presented in /4/. C



. .__.__Theorélﬁ.~'4 - o | | P
The cOnStr_aint uk" in syst‘em /2/ Ai"s. redundant in X ,"iff:;. o
={ V=[] “"'k t+

ne ] VT LY ey, - F
by Z Vi )o T
. lué . ) ’
vaD o d

Having n mind the numerical importance of the sufficient oondi__ S
tions in theorem 4, here we present its proof. ' :

Let s assume that \//KTF(p For any&ex/k and ve \//k we get

< (2, vvo«b)x‘

20 953’
-O 9@31\/ (0'9 &) 4 o V b
3 b“ R 191‘ i

From 1!6 2 ’ 3 we have()keJ&/k-—?)ke 5\,)¢7 3€,kC- Sk ).

so the constraint "kt is redundant .'m 35 .i'rhe ngggsss?{r%:econ-

dition in theorem 4 describes a rule of pract:l.cal determination _
constraint "k" redundancy in 36

_ Corollarx 1

If the following system of inequalities has a solution

Z&/ V. >/@w = (ZO\-»A k > O«\‘8 (A-A /Vt))'

L6y : ted/i |

Lwet ' e

1ved - _ N
(" O (L ‘ 3/k ) | :

tien, constraint "k" is. redundant in 36 e

Solution of the above system of linear 1nequa11ties for v;
solving cf
can be reached b;?\the LP problem

z —>mex :~ ,/7/'

Seto



B . ’ . . . N ’ v- ‘4 ’
Meeoe 0 , N 18/

I in the optimal soiution[w %) ot /7/ - /8] we have |

220 s 80 we \//k » What. indicates the redundancy of kv -
constraint. The problem /7/ = /8] is aolved until basic solution
satisfying '

[_W, Z J [oTo O]

is met, . - .
If in the optimal’ solution of /7/ /8/ z <.0, than according ‘o
a8 necessary condition of theorem 4, the conetraint "k" is not

redundant.

‘B, The set \/,,‘ 18 defined by n.+ 1 ineqmlities. Taking into

account the system /2/, generating the problem /7/-/8/, usually
it is true that 'n > m, Hence, M’ conetraints in syetem /2/
created numerical difficultiee, there ie no usefulness in apply-
ing problem /7/ - /8/.A

 Fortunately the situation is not so bad. Considering a solution
of system /6/ it is possible to aasume that some vi = 0, what
practically-cnuxﬂns, a possibility to reduoe the nnmber of inequa-
lities in system /2/, searched for a redundant constraint. |
It is easy to prove,

hgorem 5 | L i . . .
If a linear inequality is redundant in relation to a given set

of m linear inequalities, it is also redundant in relation to
this set expanded by p additional inequalities.
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Utilizing ‘theorem 5 we present some modifications of corollary 1,
resulting in an eff:!.cient mmerical procedure of a redundancy de-
"term.tnation, app].ied in relation to the whole .or part:!.al system A
" /2/ Letaﬁtﬁ @/k’ and r bea quantity of subsetBM
_(r a card'lﬁk}) : : =

: Theorem h - I

i B £ for someQ;(k) the following inequalities hold

| o. < TG e
“d ?T—S{Cu)a°3 (.3 | )

QD“ >’""Z~ bu,

1l then constraint ok from system /2/ is redundent in X .
‘To prove the theorem 4-I 1t 1s enough to see, that it is a special

/o

. case of corollary 1, where V€ V/u is a vestor with coordi-»
| nakes A for 1eIW) ' |
O &o« »63/1""3(\‘>

S Theorem I&-II

M
. If for some ’3(1(3 the foilowing inequalities hold
: ’ w:)(,k) - -
o iak _ :/_;Mb; | |
then constraint kY from- system /2] 38 redundant in x o

| "Justiﬁ.cation of thepren lo-II 15 analogous to theorem h-I.

/10/

As the components of .vector V , one. takes

M ;,_,; e k)
:'-Viu »

0 gar Le:-]“.‘»-.j(.y),
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It is easy to check inequalities /9/ and /10/ and ‘they can be,
used for large systems of inequilities, For theorem 41 e use
arithmeticel means. It is convenient if coefficients :tor parti--', :
cular variables and o constraints‘1‘c ][k) are of the sa-
me order as those in comstraint ngh, Application of theorem 411
is proposed when significant disp!opm‘hﬁm between constraint "k"
coeffioients and reference constrain'bs 1€y are o‘bserved.
The signiﬁcant property of the set Vk definition is a eign
; discretion of ooefficients appearing in its inequalities, i (-8 '
in inequalities /9/ and /10/, For'positive values by of- Ras
system /2/ can be written ina corresponding form

Box <l (o) /2

| x>0, /3°/
wherQ ;13 = aia H bi'

Application of theorem 4~I to the system /2°/, /3°/ results
in change of an inequality in /9/ to identity 1=1. So we get:

'l'heorem h-III

If in the set 2 defined by /2 '/, /3’/ for some 3,(1:) it holdss .

Ctk;, s%- ;‘.‘k’ o @b 2y,
go, the. constraint k" 1s redundent in: % .

1f the set J{kJ consists of one element for given. ke‘.‘[, then
theorem 4-I1I can be reduced to previously proved by I
W.Grabowski [2] suffioient condition of inequality nk® dele-
tion from system /2/-/3/ , because of its redundancy in referen= .

ce to inequalities i¢ 3(k), when b >o, bk> 0. -

* RHS - right, hand side



is condition is formed by the system of inequalities:

aq" Or‘ . .
I T A

Y v /11'/
w—— ] L -.‘ ;‘ \- -
Q.ka — 0"’3 (J _1).../ VL) >
what equals formula /A .or r=1.

Theorem 4-III can not be abpiied'to'deleté the equations™
~ formed from inequalities, by {ntroduction of norinegative’
~ slack’ variables. Let inequalities "i“ ‘and ‘K" frﬁmfsystem /2]

satisfy conditions /11-/. The correspondi \g equatlons are'
m’i)k + Xpii = bu Ll’u >O)

Qv ¥ * Xpek = by, (0:“)0).,"
These equations do not satisfy conditions /11°/, though

o= G'\Llno-; < o"llvwi, — \ !

bu b-“ - b; Y
however

4 - knv\‘ vyne
Az w5y TR 2 O,

%
¢, We shall discuss two other approaches when theorem 4-III,

applied to the two inequalities.in system /2/, does not lead

to determination of the constraint; k" redundancye Note, thet
theorems 4-I, 4=II and 4=II1 are the simplifications ‘of theo=
v b, They form sufficient , but not necessary conditions for

conztro nt "k redundancye.

First caéé,:>We consider two inequalities £rom system 12/,

mumbered "k" and "i" respectively. Thelr coefficients do not

satisfy condition /11°/, because

— Ao
By & Oy ! /el
J vy
while - T J-"' P B

Therefore, one can not say that the constraint "k" is redun=



dant. Let us try to apply corollary 1 to these ;.nn_c_;'ualiﬂes,
i.e, we -check if exiéts v satisfying 1nequalities=

3= , -
O.JV > Q.J : *(; N /el
Zi;rv ;? Cku? - : “ /d/ .
O¢ v &1, - | e/

Because of the third tmequality, the above ‘system has a solu- L

tion, if the following- possibilities are excludedz
1° o«.“, >0,

2° . a,u‘, é 0.

3% Gy = Ay >0

- From: inequality /a/)%ez‘g%ctgl

V2 V"‘ax{o/ 5,“ \a'*,g)O} L. /12y
Whereas from inequalities /b/ ’. 1° and 2° we get

\04,?‘ >|wa| >/O St |
_From /'b/, /d/ and /e/ it holda

o B
v £ 'afﬂ 1L ’ /13/ .

- Finally, if the inequality
Lew
is true, then the constraint "k" is redundant, because by the
" terms-/12/ and /13/,. system 1o/ =-/ef has a solution,
Suppose now, inequality /b/ holds for more than one p. The
" set of such p we denote'by?.' By corollary 1 the constraint
"k" is “rednmdant, when thev'syaf:e:h of igequalitie:s | ’
By 2 Ay 1w §e® e
..?V Za Qup. P P . j::;
O<¢ vl S
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has a solution. This solution.exists if the following'three
possibilities are excludBds

1° ai? 7 O P 6?)
20 &‘?‘ alu?<o PG?
® ag=0y >0,
In parallel way as prev:l.ously, we get

vV > W{O O ‘\ B >O} L
and
v ¢ VV\W\,{—-"'Z Pe?} M

Satisfaction of inequality L ¢ U is sufficient for the constra-
:l.nt "k" to be redundant.

Second case, In the system 2] we analyse by double checking
of /11°/ the redundancy of constraint "k" in reference to the
4wo other constraints "i" and "hf, As a ‘pesult we get '

. - — =4, .
‘> ) "‘l.t . "s" !
ey s Y ’{‘wf

Oy -6“\,,; e
wh(e);; 'P>aig ) a‘;r'e6 fhe 0;;-?:‘8 gf "f’nd?ices Mc&%: t? relations
pot satisfying /11 /, woile the constraint "k" is succesively
compared to the constrain nt #i% and later to the constraint "h".
The above presented . results do not enable to define the constra
int "k* as red:mdant.?"h.';\wwe l;abpr,)‘.\.y corollary 1 to analyse the

, coastrainté ok*, “h“ and ui®, So we state that the constraint

o)t is redundant 12 the £ollow1ng LP problem “his & * sorution’’

-3/ It :I.a onough to have any feasible solution of this problem

so :lts ¢pnaistenoy is: sufﬁcient.
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VgtV > max

So.te

aij-v'i M am Vh -a k;j /jn“gooﬁogn/

I~ N\

v, o+ Vi, 1 vi 20, vy, 20,

There again, as in the first case it is pogsible to gi#e |
.conditions of problem inconsistency. For iarge n it‘isiﬁrefer
red to replace this. problem golving b its dual prdblem R
‘asr_ib_ggmﬁggmgfnsaa{pnx?;to check itvs conéistencyo‘The‘duu
al pfoblem iss |

Yo + Z.“%'éa
4

lao"";&e;‘%& >/i

So.t,

L _
go +°Z=_‘n6'hd%3 >/d
%vh>foz y; ¢ O (:\=1)."'/"")'

This is =« ..o constraints problem, so it ié easy to sol#e;
The existance of opti mal solution to dual problem indicates
the redundarncy of the constraint "k" in the set‘aé. defini-

tion. '

$3, Rhooandant equations.

A, Tae theory of redundant equations in LP problem is more: '

complicated than the theory of redundant inequalitieso It
results from various reasons. The condition expressed as an

"4uat50n is more re%trLuL*vr Than inequality expression.
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1+ is seldom in LP problem to have more- Veque.tions '_than var:La-
bles among conditions describing set X - - o

This alone points a redundacy of some equatlons. It is lmom )

’ that condltions ‘initially - erulated as equations are nsually
essentisl constraints, when conditions formed as equations

_after’intrbduction of slack variables can:be deleted as re- B

dundant by procedures dealing with insqt 1111;195_
Finally, we do not have SO effic:.en olimlnation algorithms

for redundant equation as it is the case for redundant inequa

litieso | | | "~ At

gtandard form of 1P problem is & startingf',‘l??i!}iti f°rfurther

considerations ’ R N

€X > max R 2TV A

" 8.te ' '

a.x = b ("‘1)-' 'W")) " "/'15?/-""1
% > 0. el

linear ¢ uetions are the specific-case of the hnear inequa-

lities, 50 We aSsSumes
19 for tue problem /bl = /16/ we define sets'.l 3 / R
26, Xy 5, and Ty similarly as for’ the pro’blem /1/ - /3/
"0'51"" < bj_‘“*

2,part A/, replacing 1nequalitles ‘of the type .

~
Ny
K

by eaquations. Q%= DBy For- newly defined‘f“et 36' 36,.<,_

ot

o

relacions /5/ also hold, becauae they forin rel
necessarily satisfied by the oonjunct:l.o .
2° - ‘deflnitions of redundant and \essentxal constraint 1:1
feamble solutions set .6 ‘are the eame for e

for 5.nequal:vl:i.eso Tt wmeans that deﬁnitlons 1 and
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From the above assumptions it is obvious 'th'aft; theorems 1 and :
2 in relation to problem /14/ - /16/ are valid.

B, Let’s start the description of numerical provoedu'rés of re=-
dundancy determination in system /15/. Denote by A variables.
coefficients matrix in system /15/. The rows of matrix A are
formed by vectors 0, from this systeme '

Theorem 6

The equation "k" of system /15/ is redundant in. X }, if

INE {We R™ \w:(D WT[A) b] [00]131; prl

and simultaneously w 1[: 0.
From the assumption of theorem 6 it :follows that the equation

k" is a linear combination of the remaining equations 01 /15/ 9

ioeg
»Zei {7 Q; ) k’) Z_. *: b 3
Ik 063/;‘
where ti =Wy 3 Wy and w ¢ L)':

Therefore we have for any x 6 %}% | S LT
L(Fypeoor- Z ) anxsh] = X, & SK -
So the equation nk% is redundant in % what completes the
proof of theoren 6, ’ . |
A‘l‘heorem 6 is equivalent to sufficient condition of theorem 4,
Its practical applicability is small,, though it states suffiw o
cient condition of redundancy detection. I Cmtion of the
set Y}’ even for a given subset B, it done for the big M=

ber of equations, should be timemoonsumingo o
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It is worthwhile' to mention that the set mﬂexplorétic;n can»be
contracted to a specific mathematical programming problem sol«-
ving, corresponding 4 o ‘the problem /7/ - /8/ » It means to

the problem°

%(M) —Z | ol = wax '/18/'
Sete L | '
(A = O G=h-ow

~ ' | /19/

Auf\b =0, - .

where AJ is j-th column of matrix . A .

From /17/ ‘and /19/ we have W-W= {0}&1d also W -4:(), because
06 AL . Function g(lr)2 0 for well . So if ¢& denotes optimal
solution of the problem /18/=/19/, than w:abiff g(,iuv) >0 oF
. * O. The vector in demand is V= AL . We can stop to solved/
the problem /19/ - /20/ when the first feasible basic solution
BL¥ 0 is obtained., If the problem'/18/-/19/ is used for "k" .
equation redundancy testing in system /19/, it is convenient

to take %(u) | U.,,_[ as the objective function.

There exists another approach to equations redundancy determina-

tion in system /15/. It consists of two phase simplex method
‘used to solve the problem /14/ - /16/ .

4/ Observe the resemblance of conditions de‘éCﬁbf_ng,sets V;k
and W o

5/ We discuss problem /18/ = /19/ solving in the appendix .Ao'
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. The system /15/ can be written in a block form, if it'has =
equations being linear combinations of the other equationS° "

AW ». : B : o -
[M“’}X(f: me] 4 >k>/(D s

- The first block is formed by linear independen‘t: equations and -
‘the ‘second blook by linear dependant. In such a case, phase I
' ot simplex approach is ter:. ina-l:ed, wi-th well known relations: ‘5 e :

- “’e. ey 'ﬁ?e _ b

ag>® 3.2 >0, &F#O 9o = o,,,..

In this notation ,vectors ¥g , 35 ZIrom.the base part of the L
phase I optimal solution and they are composed of decision
and artificial variables, The resulting oonolusion is tha't: L
redundant equations have zero ooeﬁicients with all decision o
variables x4 and simultaneously zero RHS at the end of phase I? SR
computations, :

Application of this reduction prooeduz;o' ‘roquiréo to- solire" |
the probdblem with all constrains including: potentially reduced.‘
Sometimes it is worth doing, espec;!.ally when the given set of -
_constrain'bs 1s used repeatedly. R R

§4. Redundant and conditionall :‘edundanf" ablef

A, It 15 obvious that variable x'.’, hav:.ng. oonstant value
_for all solutions from set .% . i& the redundant»:varia,bl' in :

o/ In this section we use problems d.iscussed in ohapte!' .5 of'
P.G, Leunberger work [5] '
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the problem /14/ - /16/. This is accopplished by formal con=

. dition x,=
PELYE

problem /14/ - /16/, automatically excludes variable xa 'from

‘ whieh sta'ted in an initial formulation of' 'l':he_'.

further considerations, More general informatlon on the cons= "
tant sign of the variable xJ for all’ solutions also enables

us to exclude this variable from the problem.

Definition 3
| Variable x, is the null variable of the system /15/ = /16/, .
1 if for every solution ¥ ¢ 3E , one has X, = : O, "
Theorem 7
1f % ¥ (,then %, is null variable iff there exists such te ™
that
fA =207 /1/ |
¥ A, >0 /11/ | o Jzof
ﬂ;rh;? o - J111/

where A=[A A,--- A.] is gmE® the system /15/ coefficient
matrix with A{ denoting j-th column. |

We shall prove only the sufficiency of conditions /I/ -/ II/7{ )

~Let
. -

='&Nd _ /3—19 .ao’n/ . )
[T/ and /II/ = ¥ d 2 0eand ;>0 /what means tha't it .-

QJ(\n J
nes o be LT O /e

7/ Complete proof can be found in [51.



- /154, 11} = ZCL¢><¢ ):ﬁ?\v &\‘,vxd- =0 )::7' ){ézq»
. 5

d:l QSV\-
dj ?"03 'xt\ >/O, d’d >0 - . XP>’O‘I dP>

what completes the proof,
Corollary 2
If there is a homogeneous equation in system / 15/ - /16/

:é:} uéxdzo owd @y >0 %’"' yé } lzlé
then variables Xy for Je ] are mil variables of system

'/15/ /16/ . It is possible to- reduce th:.s system by removal

-

of equation "k" as unconditional and by removal of null- varia-,
blesxj(‘seA) L
Suppose that system /15/ is presented in its basic form,
assigning basic feasible solution x®

. Then, after some re-
grouping of equations and variables, its eoefficients metrix -
Ag and RHS have a property . - . . |

| “[I }P]) , V/O

Satisi’action of conditions 1/ - 111/ leading to null varia- s

bles, requires suoh vector ‘ﬁ; O, that B

¥ T
&Al >/(D->[t &P]z[@ @]
It means a replacement of the requirement & 0 by inequali- :
| tyﬂ? >0 .+ But inequalities 53>/(D H’B>’O give rise to o |
the equat:l.on ﬂi lbe 0, which is condition /III/ iff

, B o
iZfsw B>0 ot =0
Cordllam 3

Lack of degeneracy in basic :f.‘easible solutions of system /15/
-/ 16/ implies nonexistence of null variablese -

s



S

Note that- significant practical implicationa has" corollary 30
Seldom there are LP problems without at 1east one degenerated
basic solution. AccOrding to corollary 3, null variables occur
in LP problem rarely. Let s start to conelider a group of positl-

ve variables._ mm.qr .
Definition 4 |

Variable xy of the system /15/ - /16/ is positive variable 1ff
in every solution %e O one has x;j > o, ' = e T

| Theorem 8 [5] |
Suppos\the set X ¥ 05 Variable X, 1s a positive variable of

the system /15/ = /16/ L£f there exists such nonzero vector
| £ 6R™ that |
0 A=A owd &y 7O, for I¥2

Suppose that. ~aesumptions 1° and 2° are'satisfied.
)k&DE, o R ""7 X % g Z, - \‘\X~
: ‘ owxol. 2 R 4

Then S

e ¥ Z:Jom‘,x‘3 50 = % B >O~f..

S &ex KET - :
-So,. variable xg is a positive variab'ie of the system. FX speci-
1=fic‘reduction possibility of system /1 5/ - /16/ results from ”

. a proof of . theorem 8 sufficienoy condition, presented aboveo |
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Theorem D

If the following equation in system [1 5/ - /16/ exists:
ﬁ" Z:aka"a =Pk

where ak3> 0 /3 ¥ 8/, axs <0, ~bk< 0, j:hén after transformation
to ' '

B Tt 2 R
where ﬁ5 bk:aks" -m/-akj/ : . -

+the above relation is used as a, subatistution to problem /1&/-
/16/ in order to remove variable Xg from. the ob;)ective mnction
/ 1&/ and constraints /15/ ’ and to clear the system / 15/ of the

equation "k¥, ,
Note that nonzero lower bounds problem, well known in LP lite~-
rature, is reduced to positive varigbles problem. R ‘
B. Now, we pay our attention to oond.ttionally reduhdant varia-
bles and constraints, whioh are frequently used 1n different
LP reduction procedures. '
Definition 5 N v
EVariables taking zero values at every: optimal solution of LP
problem are called oonditionally redundant, o
The definition of the.set X , ob:)ectiva mnction and type
of optimization play an impor'bant role in the conditionally
) redundant variables’ determination. Conditionally redundant ve-
~;ables can be removed from the problem betore solv.tng 11-., _
without erfect on the choice of optima‘.l. solution. Un:tortunate- - ;
ly a simple method of the conditionally redundant variables - ‘

.~....-.......,-__.'_...._.,._‘...-__-..,._-___,.__...._.. st A e R

Exwiboe o sudh Q,L%onmunm wmeoL \'WIP% ne,PLaLeweuL’ : |
of o simnplex wrethod loé m'btov\ P«ww&me {or o
system of w e%m;b\cms G/MOL e Mm\uncwv\b ‘
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in'a cese of one-point set of ‘optimal solutions.
For any given solution we treat LP problem constraint as ac-
tive, if it is sat:l.sfied as equality and we call it 1na_ct1ve,
if it is satisfied as strong inequality. ' S
Definition 6
LP groft_;leg}_oonstraint vkt is cond»itionallyfx"edundant, Af it is
lnaot:l.vefor every - optimal solution. '

Fromthe ahove ‘definition it follows that the copstraint ini-
tially fomulated‘-’ as-equation can not. he conditionally redun-
dant, _ B

Duality of linear programming enables ue-.to 1link a ‘notion .
of conditionally ‘pedundant constraints witﬁ a notion of condi~- o
tionally redundant variables. B

To show this, we shall use & symetric dual problems. As &
primal LP problem let us take the problem /1/ = /3/ . Then,
its dual problem .18 ' | |

yﬁ) . =—>_ min | | 123/

se.te ,
yA > 6 | ' a - [24/
{ y >0, . - [25/:

_ whiere A is m x n matrix and y is "m" components row vector.
One ¢f the fundamental theorems in, duality theory is so called
complementarity theorem, '
Theorem 10 _

Satisfaction of the following equations is a necessary and
sufficient condition for feasible ‘solutions % ‘omd- \'i of pro]‘avlem'_s.‘
/1] - [3] end /23] = /25/ respectively, to be its optimel s°“_

} Lutions. o L "'_;_ o
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3(b-Ax%) =0 Ry
FA -¢)%=0. . 121/
Frequently conditions /26/ - /27/ are replaced by the equivalent
four implications: | “ ' ;

G >0 = a¥%= b | | 28/
¥ < by => 3;=O, | 129/
),( SO = ?NA: &AJ. /30/ -

‘ / 33/

y, N > C\\ = X = O.
Implications described by /28/ and’ /31/ can be understooa ir
" the following way, If in one of the dual problems /1/ . /3/,
/23/- /25/ some constraint is conditionally redundant at a given
optimal solution, then a dusl varieble eonjugated with it ) is
also condi tionally ‘redundant. Implications /28/ and / 30/ 1lead
'to conolusion that positive value of a decision variable at op-
timal solution implies activity o.f a dua;l. comt_raint conjugated
with it, ' EER
These four implications /28/ - /31/ we shall apply while ana-
‘\lysing one of the reduction procedures in the next section,
§§, Two reductigg grooedures of LP problema

A, In this section we are going to present two peduction pro-_ ‘
'-..cedures of LP problems, developed by Polish authors. They are
not so widely known as methods preaented. by A.L. Brearley, G.
Mitra, H.P. Williams in faJ or by I.W.Joalowicz, J M, Makarenko;
in E3} ' ‘ |
- 'I.‘he reduction procedure of the following problem is discuased '
- An f13: A
| ex —> max
s.t.. . |

vl

L, % < L. . PR
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o x > b, ve J°
e = by Len®
The reduction procedure of the following problem 1is considéred

lhefaéduction procedure of the Loit o,

e 13] ex —> mex
Sote € X o e
2ot Ax < b

O &ix @

where &,tb and %are ?os&twa vectors of proper dimensions, A
isemem’z;ibnanﬂeigauVepmatrix vector ;
1 :AB vaf benseeatapper bounds. play an important role in both
caeés‘ Prooeéurés»«tpeatbdkmﬂwhrs gection have a 1ot -in. common
with<I, ﬂrodoétawicz,‘~6m Makaneako  work: [3]. In the first pro-
vedlré - bne- ‘assameszthat ‘A 7/0 > O The second .one is ba=-
sedush - pape?SESJean&”%ﬁké%’a&vgnﬁage»of af-suxilliary problem,
gosmulapeacasiDH problemncwlthivons? @onstraint and” lower and. up-
per "boufias for: paz'ticu}amwamables. ‘Itrshould be stressed that
asmﬂﬁ&n conestalngrpusitive: -yalass sof all. problemuparame-
eareassmégzzaccem 4#intha secdnd procedure, what is not ‘the oca= -
. rseswithnBgWgcleslowicay 35My: Makarenko ‘method. -
-B°9Nwthe18hanopisesent;anaalgcmitm ‘proposed by W Radzikowski
fn [¥Y.vEnstals proosdure théinotion of redundant constraints:
is Gti1ied teocsemecextend It is not. freated as a.sufficlent
sonattionywhat: explainsla necessity‘of-trial and -err_or appro-
aéhsutﬁ“prabtﬂeeC“aﬁzi-kéwékiles method ‘is fairly effective,’
st 16 pefTésted by-a-small ‘number -of -iterations meeded 'to
obtaincoptimal *isonxtiorié‘-?-# o ‘

Syt 0P bl ERITE S SRS
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The problem /1/ - /3/ with all b17 0, a13>O and Zai;j > o o
is a starting point, The numerical process can be divided

into the following stages: B - ’ '

Stage I : for all 1 <a‘$p' we' compute

| = W L
dyy Wom by 13l .

where L is a small positive number, introduced in order to
increase dij values, '

Stage II: for all 1¢ ,j . we ca]_cula'te '

R . *

%y =m{%|“3}

Stage III: we form the setﬁ {ra 3&’3 and from the system
/2/ we delete 1nequanties with xmmbers 1 4‘; R. S )
' Stage IV: we solve the prohlem: ; : '

ﬂ f()k) - CX —> mx Y,
| @yx <by beR oy

and denote its optimal aclutd.onsl 'by x¢ - }.;',1' A 2

S'tage V: on the ground of x: we cheok :I.:E. :for all L e_ﬁ -:R g
a3 < L _ A

il - % is optimal solut:l.on of the:seti %

NO -~ no to stage V1.

St.ge VI : we enlarge the’ problem /14_'
lities @ <by with 16T =R ,where
0‘»"“>.b1. v L

8/ According to assumptions ooncerning bi"' and aid' set x is
nonempty and bounded, hence op‘cimal 8 ' tion‘“of‘ / 32/-/34/

Jdoes exist. S
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‘With so enlarged. problem [32/ = /34/ ve fonow calculat:!.ons
of s'cage IV and later.

Remark 1. ,
There is a limited number of returns to stage IV, In the' wdrs{-.f ,‘
case the last return wou' 1 lead to enlarged problem equa‘.l. to |
-probienf /A - /_3./." '

Remark 2 | B S i .
Just after girst formulat:l.on ‘of ‘the reduced problem /32[-/34/ '
it is possible on the grounds of the system /33/ to deﬁhe" i'fe.. -
dundant inequalities with indices belonging to3 =R, To. ;acc0m-= .f-

plish this ‘one has to use formulas /11/y’ /11 '/ or: corol.lary 1

in more complicated cases, :

. C. Now some comments dealing w,tth the presented above stag'es.'-_l
The quotient b 3 a:‘",j defines a maximal value reaehed by vae i :

v‘riable *4.8t the constraint "i¥, Because 11: is poseible to ha- i

ve aiaao, one assumes /stage. I/ s

4y = weB1y
Therefore the quantity - dtd ) [stage 11/ can be defined a8

mm{ \ a13> o}

T wiat correspondes to the determination of 'bhe 1nequality,

the most active upper bound for. xd values. From this poin'l'; of:

v1ew 1nequalities nyy ¢ r axge redmdent.' o Co

The first, version of the reduc ced pi'obiem / étege ‘I,,'.l’.;];/,.-.:l.’r’_;cl'\'id%"
inequalities beling ) A LR S
nlyl’fﬁée most active upper bounds for dome variable xj, e

The set X is 2 subset J‘/ of the reduced pro‘olem solntions
- get. From the above it follows that.if the. optimal solution o
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vxe X /stage Iv/ satisfies condition x:e.)é/stage v/ 1t is:
also an optimal solution of the initial pro'blem. On the
other hand it is .easy to show that initial problem inequali~

‘ ~tliesy with the strongest influence over variables need not
" i7%0:define - ,the. optimal solution of ’che set 36 .

D, At present 9/ we descridbe LP problems reduction procedure

'proposed by K. Zarychta Foj

" We: consider the problem /1/ /3/ 0. now called P, ant 1

© "dual-problem /23/ - /25/, ‘now called D

"Apart from already- defined 1n part A of section 2 notions

‘‘of: the sets X )Xy s we shall introduce another one, while

considering P problem:
LR weX Cx

’.JJ‘_\»

36 {le;xe Mt'z,

%6 [_)6 : J
Z/K waoX . (f;)f( j’ De/k ‘[)X\J( 6%/5) (/K 2/k} o
x(eJS,k ‘ ‘

—

1 So, 36, 2., :} de:fine respectively:

- feasible solutions set, SR SR IR C L

- maximal value of the objective function taken on the set %

.= optimal solutions set of P’ problem., i
A_ whereas :6,k ,Z,k ) xlk denote respectively, g
- feasible so1utions set,
.. = maximal value of the objective funotion taken on the aet %/,‘
‘. ; optimal ‘solutions set__rf the problem oreated from P by dele

' t:!.on of 'bhe oonstraint:
ak 30

sy

9/ This part of the seotion 5 ig ,5esed on chapter 8 in Fe3
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Similarly, for the problem D we introduce:

3 {\ﬁ&R \//>/O Y/N >(f) (3"' w)}

SN .5={7/\we3;w“°’”}.
ot wingb

f 763/,,./

5/«" {)7‘)768/4',7”’ W}fr}

It 15 easy -'to_ prove correctness of the :following- lemmas..
Lenma 1 ‘ | | A
Three oon.ditioxm
Jémc‘x/z ) Dé/kC.}; %/k_c‘.x .
- jjare mutually equivalent. Each of them . implies that 'the constra-
' int ngn aku bk of ‘the P probl —lis conditionally redundant.

" % Lemma’ 1', '
Three conditiona

Slxc jlv.) Lj/l<c'\j SIKC \d :
are nmtually equivalent. Each of them imj)lies that the constra-
int g yﬂ,r >/ ,,.of the D problem is conditionally redundant.

Lemma 2

lw IfmC.}Lande'L? O»AKbk, then the constraint "k" of the P
problem is conditionally redundant, and for every ye‘j it is
Y= O/is a conditionally. redundant variable/, |

Lemma. 2' : _
ir &;\CJ/ and )ys./( = y/ﬂ,,> Cr y then the constraint et of the
D problem is conditionally redundant, and for every % ¢ ¥ it

is xrao.
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These two last lemmas will be used in a reduotion procedure.
I£ 1t is easy to detine U2 F, such that |

,sup@- X <b
xe M “ k

ot hen the constraint o> < ,on can be removed from the prc
| lem P, and one can assume Vi = 0 in the probg.em D. |
Set JU one proposes to define as - C o
M, = {_le&x b, dis %& | /35/
Where t is a lower bound on the max::.mal value ‘of &X( in P
problem, One has to compute | Ea}l.c % and check if - |

maxd).&' <bk

Determination of :u ) GL.‘X( depex_zdence on t parameter is con-
fined to parametric LP problem solving | '
| QK —> wiox o
xe )l =l ex > b » /35/ -
Vo d <% ¢ 9 | |
W,Grabowski 10/ ahowed, that parametric LP methods need not |
be used 12 solve /3 6/0 ‘. | |
While ciofining the set .){ -one does not reqmre set
{&ld[g &SLM be bounded, so it can be ~Rn ; But quite ofuen "'bhe
constrainte di< % € g are already in P problem or can be
derived from other constraimss by, .for example, stage TI of
W, R.dzikowski procedure. :
Anyway, smaller interval of variables changes, better result:
one can expeot with: just described method. '

10/ See pp. 134 - 146 in [6] |
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Similarly, one defines set .)( D% such that

int Ar > Ce | .
Then, the constraint #p! cap be removed from D problem and
. variable x, can be deleted from P problem, because X, = o

' Here one proposes to define i:t J/ ass

\/‘/b:{\//‘wb} : )'«'5)}’\'“73 ' 13-
'where t is a lower bound on maximal Cxvalue, assumeck in M, .-
. sét., To calculate %nf )yﬂ\,r we solve . '

y A = win e
win yA yb >t | /38/ -
yed f<y<ch | |

E. We can conclude the part D considerations by the fpllowing 2
Procedur—é: ‘ v B
Preliminary Stage:

for every k = 1, ...,' m one calculates

pe = inz{t lm%» <bk} B -7,
From .)'(,bdeﬁnition, given by 735/ 1t fo].lowa, that for t1 t,
it is

maxw :
Hence By 18 loﬁgtg’r boundary‘x&f‘t parameter with maximal value
 of g % in /36/ smaller than by.

For every T = 1,..4..p: N We compute also

= inf {t lmin YA, > c«-} T
Q, defines lower boundary of t parameter with mnimal value
\//ﬂl in /38/, greater than Cr .

It is the final part of preliminary stage, provid.ing pk and qr
values necessary for the probable reductions performed :l.n the -

next stage.
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Reduction stage: A .
we bu.:.lt sequence z, < 2, L ose & z, of consecutlve increasing-
ly better lower eliminations of the objective function d;&
op{:imal value in P p:g*oblemo | v

The reduction ruie results immediately from the following
theorem11/ T
. Theorem_ 11 » , . |
| Let 2g /2 z/ be an objective function Cx value, "obtained
af."s".iteration of P problem solving,-or stated in anothgr
way, It~is a lower bound for an optimal Qalue of the ohjective |
function. If Z :>pk, ‘then P problem constralnt wg is conditioy
nally redundant and a conjugated variable ‘ék of D problem is
conditionally redundant. If zkj> qr’ the conditionally redun-

dant are: D problem constraint,"r" and a con;jugated vapiable

X, of P problem, | ‘ .o

Finally, we would like to oomment on some numerical aspectis
of the reduction procedure,
19, It is not necessary to compute all- pk and Qe It is enough
to consider only some subeets of these values.
2°, It is possible to use other, iower bounds”of t parameter, |
than calculated according to /39/ » /40/ by, qr values.
On 'the other hand, appllcation of 1nfmnum notion to pk
and dp de:t‘lnition provides better reduc‘tion possibilitz.eso
3°, Some new information can result in cubicoids [x|d ¢<x ¢ g1
owck {ylﬂ%ydb} dimensions decrease, what provides an

'opportunity to compute Pk and q,, values from the beginning.

11/ Proof of this the‘orem caﬁ be found in [6], p. 127.
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Appendix A

- The problemm /1&/-/19/ belongé to the class of LP pfobleys with
absolute - value functionals and unrestricted variables u;.
According to G.Hadley1/ suggestion,protlenm /1b/-/19/-should.be
replaced by LP problem: ' | .
-]%(u‘; - u;) ~—> max
s.t.

r_ -T . ) .
(@ -ef A oy fiat,ennpny
(et -exy b =0
. @Y <0
.95 7/@/ 0. on < b . :
To solve it simplex method with bounds/fntroduqﬁ? to the basis
of one of the variables u;,if the other from“the’pair is present
+ - '
) /ui or uy / canbe used.

In [B:Iit was shown tnat such approach is not correct,because
it leads to local optimum instead of global one,It is obvious
also,becduse maximum finding of concave objective function on
a covex set needn*t to give glubal optimum,

As rar as problem /16/-/19/ is concerned,these disadvantages
of Hadley's proposal are not important,becduse all we want to
know is a consistency of the provlem,not its optimal solution,

And this is achieved by the presented prOposal.r

- - - - - - - — = - . G S G G - - G - — - - - . -

1/ G.Hadley "lLinear programming'",Addison-Wesley,1963,p.172,ex,5=12
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