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ON THE USE OF FICTITIOUS BOUNDS IN TREI!
SEARCIH ALGORITIHMSY

-MOKIHTAR §. BAZARAAL AND ALWALID N, ELSHAIELS

One of the strategies used by many tree search algorithms is Lo follow down one path in (he
tree until either a feasible solution is found or clse [athoming occurs. For a minimization
problem, the lower hounds calculated at various tree nodes tend to be well below the aptimal
value of the objective function, let alone the values of the suceessively impraving upper
bounds. As a result Tathoming usually occurs only deep in the free, and consequently, the
scarch becomes rather lengthy. The purpose of this note is (o describe o procedure Tor using
and updating fictitious upper hounds in a systematic way so that optimal and suboptimal
solutions can be obtnined with a smaller computational efforl. The procedure is illustrated by
two examples: the traveling salesman problem and the quadratic assignment problem.

Introduction

Tree search algorithms for a minimization problem can be classified under two
major categories. The first (breadth) category attempts to scarch the tree by branching
from the node with the smallest lower bound. This serves to minimize the portion of
the tree which is explicitly explored, but on the other hand requires storing all the
nodes whose lower bounds are less than the current best known upper bound. The
second (depth) strategy follows down one path in the tree until a feasible solution is
found or else the lower bound exceeds the upper bound and fathoming occurs.

In the depth strategy it becomes of great importance to have a®tight upper bound so
that fathoming would occur without the need to go deep in the tree. One way of doing
this is to use a fictitious upper bound which is smaller than the current bound at hand.
The reader may refer to Lawler and Wood [4] for the use of fictitious bounds and for
a survey. of branch and bound procedures.

The purpose of this paper is to present a systematic way of choosing and updating
the fictitious upper bounds so that both optimal and suboptimal solutions can be
obtained by expending less computational effort. The method is particularly suited for
in-depth tree search algorithms. '

The Use of Fictitious Bounds

Let UB and LB be the upper and lower bounds on the minimal objective value of
the overall problem. The upper bound UB is given by the smallest objective value of
all known feasible solutions. Given a partial solution during the search process, let
LB’ be a lower bound on the objective values of all feasible completions of this
solution. Obviously, if LB’ » UB then the partial-solution is fathomed since it cannot
lead to an improved feasible solution.

Now construct the following fictitious upper bound FUB=a UB + (1 — a)LB,
where a € (0,1]. Since UB > LB (if UB=LB we are through), and if a <1, then
FUB <-UB. If we fathom when LB’ > FUB rather than when LB’ > UB, then the
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portion of the tree explicitly searched would be reduced, and the speed of fathoming
would increase. If a feasible solution with objective fsuch that f< FUB is obtained,
the new feasible solution and corresponding pertinent information’ are stored, UB s
replaced by f; a new fictitious upper bound is computed, and the process is continued
starting with the newly found solution. If, on the other hand, the overall tree is
scarched without finding a feasible solution with J<TUB, then we conclude that the
overall fower bound is at feuast FUB, and so LB is replaced by FUB. In this case one
of the following alternative actions may be tuken. ;

(@) I UB and LB are sufficiently close we may stop with a “qualified” suboptimal
solution,

(b) If an exact optimal solution is desired, and if UB and LB are sufficiently close,
then a is switched to 1, and the search is continued from the node with the best
known solution whose objective is UB. The effect of this is to abandon the fictitious
bound approach and only fathom when LB’ > UB.

(¢) If UB and LB are not close, then the search is continued from the node with the
best known feasible solution. A new FUB is computed with the same a or with a
larger « (recall that LB was raised). ‘

Obviously the strategy discussed above will lead to an optimal solution, or to a
suboptimal solution with any a priori desired degree of accuracy. Even though parts of
the tree will be searched more than once, the quick fathoming outweighs the repeated
efforts, as indicated by the computational results in [1] and [2] and the two examples
to be discussed later in this paper,

The Choice of o

The chowee of « depends largely on the quality. of the initial bound LB available,
whether an optimal or suboptimal solution is required, and thg quality of the latter.
The following discussion may serve only as a general guideline. If a is chosen close to
I, then we are in effect fathoming on a number close to UB, thus the frequency of

fathoming would not be high and the search may be entangled in detecting complete
solutions which are eventually not very valuable, On the other hand, if « is close to
zero, then fathoming will be substantially speeded, but it would be less likely to obtain
feasible solutions with objective less than the fictitious upper bound.

Hence, il the lower bound LB is known @ priori to be close to the optimal objective.
small values of a are recommended, e.g.; « in the range from 0.1 to 0.4. If, on the
other hand, a tight lower bound is not available, then larger values of a should be
used. For instance, if the optimal objective is known to be positive, we may fix LB at
zero, and use values of a > ...

If the quality of the available lower bound cannol be ascertained helorchand,
values of « in the neighborhood of a = 0.5 are recommended. Il o = 0.5 is used.
whether a feasible solution with objective less than FURB is found or not, the interval
of uncertainty is at least reduced hy hall at each iteration, as shown in Figure |,

' For exumple, in the traveling salesman problem we may store the information 1—»S(3)—8—2—3— |
corresponding o ihe Wur L 5,45 2-23 5 | where the notation (3) means that the lower bound of all
complenons of the partial wur |- 5 53 is at leust equal 1o the cost of 4 known tour.
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Examples

We will now illustrate the effectiveness of using fictitious upper bounds in speeding
the branch and bound search by (wo examples: (he traveling salesman problem and
the quadratic assignment problem. The reader may refer (o [T] and [2] Tor the details
of the algorithms used.

The Traveling Salesman Problem

The use of fictitious upper bounds was incorporated in a code for solving the
traveling salesman problem. The following are some highlights of the procedure used,
First, the dual problem is solved by a subgradicnt optimization technique, and the
dual variables are used Lo form a new cost matrix. An in-depth branch and bound
search was used to solve the primal problem. Given a partial solution, the node with
the cheapest connection to the most recently assigned node is chosen, and LB’ is
computed by finding the minimal spanning tree of the unassigned npdcs. For more
details the reader may refer to [1]. ;

The 42 city problem of Dantzig, et al. {3] is used for illustration here. LB was fixed
at zero while computing FUB, and the problem was solved three times independently
on a Univac 1108, with a = 0.95, @ = 0.97, and then & = 1.0 (sirice LB was fixed at 0,
large values of & were chosen). The results are shown in Table 1. Notice that the CPU
time increases substantially as « increases with a relatively small improvement, or
none at all, in the value of the best tour. With a = 0.95, a tour with cost 708 was
obtained in 5.9 seconds, while .« = 0.97 produced the same tour but in 32.8 seconds.
Only when o = 1.0 was used, the optimum tour with cost 699 was obtained and
verified in 65.1 seconds. :

TABLE 1
Experience with the 42 City Problem

QOverall Lower Optimum Ob- Computa-

Bound from the Length of tained and tional Time

a Dual Problem Best Tour Verified in Seconds
0.95 693 708 NO 5.9
0.97 693 © 908 NO 328
1.0 633 699 YES 65.1

In another run, fictitious bounds were used to find the optimal solution. LB was
fixed at zero, and the following successive values of a (all in the same run) were used:
0.93, 0.95, 0.97, and 1.0. With a given a the tree is searched, fathoming whenever
LB’ > FUB. After the tree is exhausted, a is increased as indicated above, and the
search is continued from the node with the best solution. As a result, the optimal tour
was obtained and verified in 27.7 seconds as opposed to 65.1 seconds without the use
of fictitious bounds.
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With the value of the optimal solution known to be 699, another run was executed
with UB = 700 and « = 1.0, The purpose of this run was to identify the optimal tour
and to examine the effect of using the smallest valid upper bound on speeding the
search. The running time was 5.2 seconds, approximately 4.4 seconds of which were
used in the dual phase. in other words, the branch and bound scheme used Approxi-
mately 0.8 seconds to identify the optimal tour and verify its optimality.

The Quudratic Assignment Problem

As another example, the use of fictitious bounds was incorporated in a code for
solving the quadratic assignment problem. First an overall lower bound LB is
caleuluted by Snlving a linear assignment problem. Then an in-depth branch and
bound algorithm is used. Given a pactial assignment, a lower bound LB on all its
feasible completions is calculated by means of a linear assignment problem. The next
object to be assigned was that with the maximum interactions with the most recently
assigned object, For further details the reader may refer 1o [2].

Here we give our experience with a 6 X 8 quadratic assignment problem, where 6
objects are o be assigned to 6 of 8 available locations, The interactions among the
objects and the arrangements of the locations are depicted below (rectilinear distance
is used),
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The problem was run twice on an |1BM 370/155. In the first run « = 1.0 was used,
i.e., no fictitious bounds. The optimal solution with objective 281 was obtained and
verified in 7.5 seconds. In the second run «=0.5 was used until the difference
between the lower and upper bounds was < 10, in which case we switched to « = 1.0.
The optimal solution was obtained and verified in 3.4 seconds.”

? Professor Bazaran’s work was partinlly supported by NSF Grant GK-38337, Professor Elshafei's work
was done winle visiting North Caroling State University.
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