

سلسلة قضايا التخطيط والتنمية (رقمه ٤٢)

نموذج رياضى احصائى للتنبؤ بالأحمال الكهربائية باستخدام الشبكات العصبية

نوفمبر ۲۰۱۳

تعتبر سلسلة قضايا التخطيط والتنمية المصدر الرئيسي لنشر نتاج المعهد من دراسات وبحوث جماعية محكمة في مجال التخطيط والتنمية. وبحوث المعهد التي يتم نشرها في تلك السلسلة هي بحوث يتميز بها المعهد دون غيره من المؤسسات البحثية وتعتبر مرجعاً رئيسياً للباحثين من الجامعات ومراكز البحوث في مصر والدول العربية، فالمعهد به باحثين متنوعي التخصصات وهذا بدوره ينعكس على إثراء الفكر وشمولية الدراسة لأى قضية يقوم المعهد بدراستها من جوانبها وأبعادها المختلفة وخاصة الجانب الاقتصادي، الجانب الاجتماعي، الجانب المؤسسي والجانب المعلوماتي والإحصائي.

ومنذ بدء نشر الإصدار الأول لسلسلة قضايا التخطيط والتنمية في عام 1977 وحتى الآن ومعهد التخطيط القومي يقدم للباحثين ومتخذي القرار العديد من الدراسات القيمة التي تعالج العديد من القضايا كلها تحت مظلة التخطيط والتنمية ومن أهمها: العمالة – التنمية الإقليمية – التنمية الزراعية – التجارة الخارجية – التضخم – تنمية القرى المصرية – الصناعات التحويلية – دور القطاع الخاص في التنمية – الخصخصة والإصلاح الاقتصادي - السياسات الزراعية في مصر – تخطيط الصادرات – صناعة الغزل والنسيج – آفاق الاستثمار الصناعي – التفاوتات الإقليمية للنمو الاقتصادي والاجتماعي – تخطيط الطاقة – اقاق الاستثمارات العربية – السياسات التسويقية للسلع الزراعية – الاستزراع السمكي في مصر – الصناعات الصغيرة – الإنتاجية والأجور والأسعار – سياسات اصلاح ميزان المدفوعات – تطوير مناهج التخطيط – تخطيط التعليم – السياسات القطاعية – إدارة الأزمات المهددة لاطراد التنمية البشرية – التشغيل والبطالة – الحسابات القومية – اللامركزية – قضايا الدولية – التنمية البشرية – التشغيل والبطالة – الحسابات القومية – اللامركزية – قضايا البيئة والموارد الطبيعية.

وبالرغم من أن المعهد دائم التطوير والتنويع في مصادر النشر لإنتاجه العلمي إلا أن سلسلة قضايا التخطيط والتنمية ستظل أحد أهم مصادره لنشر البحوث الجماعية التي يقوم بإجرائها باحثين من المعهد، بالإضافة إلى المجلة المصرية للتنمية والتخطيط التي يصدرها معهد التخطيط القومي لنشر البحوث الفردية المحكمة للباحثين من خارج وداخل المعهد.

والله ولى التوفيق،،،

رئيس المعهد

أ.د. عبد الحميد سامى القصاص

المقدمة

من أهم المشاكل الحالية التى تواجه الشبكات الكهربائية هى عملية التنبؤ بالأحمال المستقبلية. التنبؤ بالأحمال الكهربائية فى نظام الطاقة الكهربية يمكن تقسيمه طبقاً لفترة التنبؤ الى الفترات التالية :-

أ – المدى القصير (بضعة ساعات فى اليوم أو عدة أيام) Short-Term (بضعة أسابيع) Medium-Term (بصعة أسابيع) Long-Term (ج- المدى الطويل (سنة أو عدة سنين)

ومعايير اختيار عملية التنبؤ في أي فترة تختلف عن الأخرى إذ تحتاج الى متغيرات وعوامل مختلفة. فعلى سبيل المثال ، فان أهم العوامل للتنبؤ بالأحمال في المدى القصير يتضمن الساعة خلال اليوم ، واليوم في الأسبوع ، درجة الحرارة ، نسبة الرطوبة ، التأثيرات الموسمية وغير ذلك . أما عوامل التنبؤ بالأحمال الكهربائية في المدى الطويل تتضمن الأنشطة السياسية والنمو الاقتصادي ودرجة التنمية الصناعية في المناطق المختلفة بالإضافة الى التغير العشوائي لبعض الأحمال أو وحدات توليد الطاقة .

والتنبؤ بالأحمال الكهربائية تعتبر مشكلة صعبة للغاية إذ تتطلب تحليل احصائى مكثف بالإضافة لصياغة المشكلة علاوة على النمذجة وتتوقف الى حد كبير على المنطقة الجغرافية المطلوب التنبؤ بالأحمال الكهربائية لها .

التنبؤ بالأحمال الكهربائية فى المدى القصير هى أداة نافعة جدا فى الاستخدامات الكهربية وفى تطبيقات متعددة مثل التوطن الاقتصادى وفى توفير توليد الطاقة ، تحليل تأمين النظام، تحليل انسياب الأحمال الكهربية، انقطاع التيار الكهربائى، جدولة الطاقة ، جدولة الصيانة، الدالة المثلى لانسياب الأحمال الكهربائية، الطاقة المثلى لجهد المولد الكهربائى وجدولة التحويل واستراتيجيات الأحمال الكهربية.

وهناك عوامل كثيرة ومختلفة تؤثر على مستوى نظام الأحمال الكهربائية مثل العوامل المناخية والأرصاد الجوية ، درجات الحرارة السابقة ، نسبة (شدة) الرطوبة، شدة الرياح ، شدة الإشعاع ، الكثافة الضوئية ، إستراتيجية الأسعار (التسعير) ، هيكل تعريفه

الكهرباء ، التحكم فى الأحمال الكهربائية ، التغيرات فى الأنشطة الصناعية ، التنمية الاقتصادية ، التغيرات الموسمية (الصيف والشتاء والربيع والخريف) وفترات الأجازات والعطلات والأعياد .

علاوة على ذلك فإن النظام الكلى للأحمال الكهربائية يعتمد أساساً على الإضطرابات العشوائية الناتجة بسبب الزيادات الكبيرة في الأحمال. أو انقطاع التيار الكهربائي، وتضمين كل هذه العوامل السابقة في نماذج التنبؤ يعتبر عملا غاية في التعقيد.

يوجد طرق مختلفة للتنبؤ بالأحمال الكهربائية في المدى القصير ويمكن تلخيصها في المجالات الثلاثة التالية :-

1 طرق التحليل الاحصائى (النموذج الرياضى):

تعتمد دقة الطريقة الإحصائية (النموذج الرياضي) المستخدمة على دقة تمثيل العلاقة بين متغيرات الطقس والأحمال الكهربائية ويجب أن تحدد هذه العلاقة قبل استخدام النموذج الرياضي في عملية التنبؤ وطريقة التحليل هذه قد أثبتت كفاءتها في الأيام الطبيعية بينما في الأيام الخاصة والأعياد لاتصلح هذه الطريقة، وخبرة الباحث هي التي يعتمد عليها للحصول على تنبؤ دقيق لنظام الأحمال الكهربائية.

2 - طريقة النظم الخبيرة Expert System:

طريقة النظم الخبيرة تهدف الى تحديد المتغيرات والقواعد التى يستخدمها الباحث فى التنبؤ بنظام الأحمال الكهربائية ومعايير استخدام القواعد المختلفة فى المواقع المختلفة. النظم الخبيرة أثبتت تحسين الأداء ولكن زيادة التعقيد فيها مع دقة الصياغة المنطقية قيدت استخدامها. النظم الخبيرة صممت بقواعد أما لتجعلها معقدة فى التطوير أو قابليتها للتعلم ضئيلة. إذا تعقدت الصياغة المنطقية زادت من تكاليف التطوير. أحيانا يكون من المستحيل الربط بين الباحث و soft code علاوة على أن النظم الخبيرة ليست صلبة إذ أن أى خطأ بسيط فى صحة المدخلات قد يعوق المخرجات المفيدة. بما أن نماذج الأحمال

الكهربائية اليومية في نفس المنطقة الجغرافية تتكرر في نفس نوع اليوم في نفس الموسم، لذا ظهرت طريقة الشبكات العصبية الأصطناعية Networks (ANN)

Artificial Neural Networks طريقة الشبكات العصبية الأصطناعية 3 (ANNs):

تم اقتراحها للتنبؤ بالأحمال الكهربائية في المدى القصير. طريقة الشبكات العصبية ANN لها مميزات كثيرة مما جعلها الأنسب في تطبيق التنبؤ بالأحمال الكهربائية. فعلى سبيل المثال أنها لاتتطلب أي علاقة دالية محددة سابقا بين الأحمال الكهربية والمتغيرات الأخرى مثل شروط الطقس. طريقة ANNs تمدنا بدالة غير خطية للأحمال الكهربائية بدلالة متغيرات الطقس ونماذج الأحمال الكهربائية السابقة بدون الحاجة الى نموذج سبق تحديده. كذلك فان الشبكات العصبية عادة تتفادى الأخطاء (اتقاء الأخطاء)

تدريب النظم الخبيرة وتدريب الشبكات العصبية:

تدريب الشبكات العصبية لها مميزات كثيرة عن تدريب النظم الخبيرة ، فعلى سبيل المثال فإنها تنشىء نموذجاً يتوافق مع الخصائص المشتركة مع معظم الحالات الخاصة وتغطى هذه الخصائص في أوزانها وبدياتها .

ولكن الشبكات العصبية يمكنها أيضا تكوين نماذج جديدة لم تكن متوقعة بالضرورة. علاوة على أن الشبكات العصبية بصلابتها يمكنها اتقاء (تفادى) الأخطاء في مدخلات البيانات عندما تكون هذه البيانات تقريبة فإنها يمكنها أن تعطى إجابات مقبولة.

وقبل تدريب الشبكات العصبية الأصطناعية يجب تحديد مايلي :

- 1 -ماهى أنواع الدوال (العلاقة) المدخلات / المخرجات القابلة للتدريب .
- 2 ماهى عدد الطبقات فى الشبكة وماهى عدد الرءوس فى الطبقة التى تعطى أفضل حل للمسألة .

- 3 -ماهى الاستراتيجية التى يجب استخدامها لتنظيم البارامترز المختلفة والتى تتحكم فى عملية تدريب الشبكة . نستخدم فى هذا البحث الشبكات العصبية ذات التغذية الأمامية متعددة الطبقات وذلك لإيجاد .
 - التنبؤ بالأحمال الكهربائية.
 - التنبؤ بالنقطة العظمى للأحمال الكهربائية أى أكبر حمل خلال اليوم.

أهداف البحث:

- 1. دراسة الطرق السابقة للتنبؤ بالأحمال الكهربائية .
- 2. دراسة الطرق السباقة للتنبؤ بالنقطة العظمى للأحمال الكهربائية .
 - 3. تحديد المسائل المتعلقة بهذه الطرق.
- 4. تجميع بيانات الطقس والأحمال الكهربائية لنظام الطاقة المصرى.
- 5. دراسة مدى استخدام الشبكات العصبية الاصطناعية للحصول على :-
 - أ. التنبؤ بالأحمال الكهربائية يوميا.
 - با. التنبؤ بالنقطة العظمى للأحمال الكهربائية

الفصل الأول

الذكاء الاصطناعي والنظم الخبيرة Artificial Intelligence & Expert Systems

الفصل الأول الذكاء الاصطناعي والنظم الخبيرة Artificial Intelligence & Expert Systems

_

1 1 الذكاء الاصطناعي

يعتبر علم الذكاء الاصطناعي (AI)علما حديثا نسبياً حيث نشأ أواسط القرن العشرين. ويختص هذا العلم بتطوير النظم التى تقوم بإظهار الطرق الذكية. هذه النظم صممت لكى تقلد الإمكانيات البشرية فى التفكير والاستشعار. وقد اتجهت الأبحاث العلمية فى الذكاء الاصطناعي مع تطور العلوم الحديثة نحو اتجاهين أساسيين هما : علوم وأبحاث بسيكولوجي ة خاصة بطبيعة تفكير الإنسان، وتطوير تكنولوجي خاص بالنظم الحسابية

والمصطلح الاصطناعي يدل على أنه من صنع الإنسان man-made علما بأنه لا يوجد للذكاء الاصطناعي تعريف موحد حتى الآن، وأهم التعاريف تدور حول أنه علم يهتم بما يلى:

- الأنشطة المتعلقة بالتفكير البشرى مثل صنع القرار، حل المشاكل، التعلم، [Bellman, 1978]...
 - دراسة الكفاءات العقلية من خلال نماذج حسابية

[Chariak & Mc Dermott, 1985]

- دراسة كيفية جعل الحاسبات تقوم بأعمال يقوم بها الإنسان حاليا بشكل أفضل دراسة كيفية جعل الحاسبات تقوم بأعمال يقوم بها الإنسان حاليا بشكل أفضل
- دراسة الحسابات التي تجعل عمليات الإدراك والتفكير والتصرف ممكنة [Winston 1992]
- فرع علوم الحاسب الذي يهتم بالسلوك الإنساني [Luger & Stubblefield, 1993]

وبالتالي يمكن تعريف الذكاء الاصطناعي AI بأنه العلم الذى يهتم بصنع آلات ذكية تتصرف كما هو متوقع من الإنسان أن يتصرف.

1 2 لمحة تاريخية:

على الرغم من أن علم الذكاء الإصطناعي علم حديث استخدم هذا التعبير لأول مرة عام 1956 من قبل John McCarthy من MIT فإن جذور هذا العلم تمتد إلى آلاف السنين، فقبل الميلاد قام الفلاسفة بجعل علم AI ممكنا وذلك بتعريف العقل Mindبأنه بطريقة ما يشبه الآلة التي تعمل على معرفة مشفرة بلغة داخلية، وأن الفكرة Thought يمكن استخدامها للتوصل إلى القرار الصحيح.

وقد أهتم الرياضيون بتأمين الأدوات التى تتعامل مع البيانات المنطقية المؤكدة والاحتمالات والخوارزميات، وأكد علماء النفس أن الإنسان يمكن اعتباره كآلة لمعالجة المعلومات، وأوضح علماء اللغات أن استخدام اللغات يتلاءم مع هذا التمثيل. وأخيرا فإنه باختراع الحاسبات الالكترونية وتطورها السريع أمكن تحويل هذه الأفكار النظرية إلى الحياة العملية، حيث قدم مهندسو الحاسبات الالكترونية المستلزمات اللازمة لجعل تطبيقات AI ممكنة.

ويمكن تلخيص تطور مجالات الذكاء الاصطناعي كما يلي :-

- فى عام 1950 تم تطبيق اختبار يقوم على قاعدة وهى أن الآلة تؤدى دورها بذكاء. وفى عام 1960 تأسس مجال الذكاء الاصطناعي على انه مجال بحثي وكنتيجة لذلك ظهرت النظم الخبيرة التي تعتمد على قاعدة المعرفة.
- وفي عام 1970 بدأ استخدام الذكاء الاصطناعي وبذلك ظهر دعم اتخاذ القرارات باستخدام الذكاء الاصطناعي.
- وفي عام 1980ظهرت الشبكات العصبية الاصطناعية 1980ظهرت الشبكات العصبية Networks(ANN) وبالتالي ظهرت التراكيب التي تشابه الاتصالات العصبية المخية فيما بين بعضها البعض.
 - وفى عام 1990 ظهرت البرامج الذكية وكنتيجة لذلك ظهرت البرامج Software التي تقوم بعمل المهمات المختلفة بدلا عن المستخدم نفسه.

3 1 فروع الذكاء الاصطناعي:

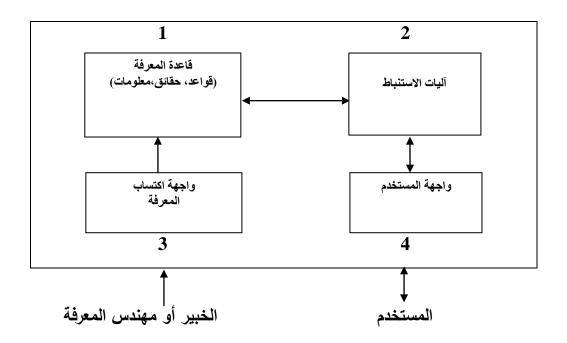
يأخذ البحث فى الذكاء الاصطناعي اتجاهين، يحاول الاتجاه الأول تسليط الضوء على طبيعة ذكاء البشر ومحاولة التشبيه له بقصد نسخه أو مطابقته أو ربما التفوق عليه، ويحاول الاتجاه الثانى بناء نظم خبيرة تعرض سلوك ذكى بغض النظر عن مشابهته لذكاء الإنسان.

وتهتم المدرسة الأخيرة ببناء أدوات ذكية لمساعدة الإنسان في مهام معقدة مثل التشخيص الطبي، والتحليل الكيماوي، واكتشاف النفط وتشخيص الأعطال في الآلات. كما يتضمن الذكاء الاصطناعي أنظمة أخرى مثل أنظمة ذات إدراك بصرى وأنظمة تتفهم اللغة الطبيعية وأنظمة تعرض قدرات تعلم الآلة وأنظمة الروبوت وأنظمة ألعاب المبارزة.

1 4 النظم الخبيرة:

النظام الخبير عبارة عن برنامج حاسب يمثل الطريقة التى يحل بها الخبير مسالة ما في مجال محدد. ويتألف النظام الخبير عادة من:

- End User Interface واجهة ربط مع المستخدم i
- ii قاعدة معرفة Knowledge Base (معلومات،حقائق، قواعد، خبرة،..)
 - Inference Engine (محرك إستنباط (محرك إستنباط) iii



شكل (1-1) : مكونات النظام الخبير

في هذا النظام تجرى العمليات كما يلي:-

i) يقوم المستخدم باستشارة النظام من خلال واجهة المستخدم والتى تحدد الطلبات Types) واللغة المطلوب استخدامها. ويقوم النظام بالاستفسار من المستخدم بواسطة الواجهة نفسها ليحصل على المعلومات اللازمة لاتخاذ القرار.

ii) تحتوى قاعدة المعرفة على كل المعارف (المعلومات) التى يستخدمها الخبير البشرى لحل مشاكل المجال المحدد.

iii) تقوم آليات الاستنباط باستخدام الاستنباطات اللازمة وباستخدام قاعدة المعرفة حتى يصل إلى القرار بالنسبة للمسألة المطروحة وعملها هو كالآتى:

(1) الربط بين حقائق حالة معينة مع المعرفة الموجودة في قاعدة المعرفة حتى يمكن الوصول إلى استنباط معين.

فى النظم الخبيرة التى تعتمد على القواعد تتحكم آليات الاستنباط فى ترتيب تطبيق القواعد كما تمحو التعارضات التي تظهر إذا كانت هناك أكثر من قاعدة يمكن تطبيقها وهذا هو ما يؤدى إليه موضوع الاستنباط باستخدام القواعد.

(2) توجيه حلقة الاتصال مع المستخدم إلى الاستعلام على معلومات إضافية يحتاجها النظام حتى يقوم باستنتاج ما بعد تدخل الحقائق الخاصة بكل حالة فى الذاكرة الفعالة. وتقوم آلية الاستنباط بتطبيق القواعد على ما تحتويه الذاكرة وبإضافة معلومات جديدة حتى يمكن الوصول إلى الهدف. تعمل آليات الاستنباط عامة فى نظم الاستنتاج بواسطة القواعد إما بربط القواعد ربطا أماميا أو ربطاً خلفيا. ويتم ذلك باستخدام طريقتين.

الانتشار الأمامي وهي طريقة تتحكم فيها البيانات. تقوم الطريقة على الحقائق الموجودة لدينا بالفعل وكذلك بواسطة الافتراضات التي يمكن أن تتحقق. ونحاول باستخدام آلة الاستنتاج التوفيق مابين ما هو موجود في الشرط IF وما هو موجود في قاعدة المعرفة. إذا تم استنباط أكثر من قاعدة يمكن باستخدام قاعدة أخرى لاختيار قاعدة واحدة من بين هذه القواعد. يمكن مثلاً استبعاد القواعد التي تم استنتاجها من قبل وإحلال القواعد الجديدة بدلا منها.

الانتشار الخلفى تحاول آلية الاستنباط فى هذه الحالة أن تجد توافقا بين الأجزاء الموجودة فى Then للقواعد المختلفة الموجودة لدينا، فإذا وجدت القاعدة التى نبحث عنها كان الأساس الجديدة الذى وجدناه هو الهدف الجديد للبحث حتى نصل إلى أساس يكون فى الأصل معطى لنا فى البيانات عندها يتضح أن ما نريد استنتاجه صحيح. ويكون الانتشار الخلفى مناسبا إذا كانت الاستنتاجات محددة وواضحة.

ويطريقة أخرى فإن قاعدة المعرفة والآليات الاستنباطية يمثلان المعرفة المخزنة فى ذاكرة الخبير البشرى والقدرات الاستنباطية له. تحتوى آليات الاستنباط على مجموعة من العلاقات المنطقية والتى يمكن أن تشبه (وقد لا تشبه) طريقة التفكير التى يستخدمها الإنسان. ولكن من المهم أن تكون النتيجة التى يتوصل إليها مشابهة. وقاعدة المعرفة تكون غالبا مبنية على قواعد مؤلفة من العديد من العلاقات (شرط إذا كان IF Condition) إذن (THEN) والتى تصف كل مجالات المعرفة التى يستخدمها الخبير البشرى فى مجال التطبيق المحدد. وهنا تكمن صعوبة تحقيق نظم الخبرة، إذ أن الخبراء البشريين عادة لا يستخدمون معرفتهم حول موضوع ما بطريقة مؤلفة من عدد من القوانين، ويشكل عام لا تكون الحياة والإنسان بهذا التنظيم المحدد.

وبالتالى فإن نقل المعرفة من الخبير البشرى يشكل مرحلة صعبة وطويلة في كثير من الأحيان.

تتميز النظم الخبيرة بإمكانية استخدامها لمعطيات غير كاملة حيث تتضمن قاعدة المعرفة درجة اليقين Degree of Certainty عند تصميم النظم الخبيرة.

تستخدم النظم الخبيرة فى مجالات متعددة سواء كنظم مستخدمة ضمن نظم أخرى، مثل مصحح القواعد Crammer Checkerوالمعالج Wizardفى البرمجيات المعروفة مثل حزم الجداول الالكترونية وحزم الرسوم البيانية Graphic Packagesأو كنظم مستقلة تستخدم فى الصناعة مثل كروت الائتمان Credit Cards،...

5 1 خصائص النظم الخبيرة

أ المزابا:

- النظم الخبيرة غير معرضة للنسيان بعكس الخبير البشرى
- يمكن نسخ عدة نسخ من النظم الخبيرة بسرعة، بينما تدريب شخص خبير من
 قبل شخص آخر قد تكون عملية طويلة ومجهدة ومكلفة.
- بناء النظم الخبيرة قد يكون فى حد ذاته مكلفا غير أن تكلفة التطوير والصيانة يمكن توزيعها على مجموعة من المستخدمين. مما يقلل التكلفة العامة مقارنة بتكلفة الإنسان الخبير.
- النظم الخبيرة تعامل المسائل المتشابهة بطريقة واحدة بينما قد يتأثر الإنسان الخبير بعدة عوامل مثل تحديث المعلومات أو كمية المعلومات المتاحة.
 - النظم الخبيرة توثق قراراتها بشكل دائم.
 - إمكانية تجميع خبرة عدة اشخاص في نظام واحد.

ب العيوب

- يتميز الشخص الخبير بالإدراك الحسى Common –Sense ، بينما لا تتميز النظم الخبيرة بذلك.
- يمكن للإنسان الخبير أن يتجاوب مع حالة غير عادية بينما يتعذر ذلك على النظم الخبيرة.
 - يتأقلم الشخص الخبير مع تغير الظروف بينما تحتاج النظم الخبيرة إلى تحديث خاص بهذه الظروف.
 - النظم الخبيرة قاصرة عند المشاكل الخارجة عن نطاق خبرتها.

كنتيجة لذلك فإن النظم الخبيرة تكون أسرع وأدق من الإنسان فى بعض الحالات مثل توقع الحالة الجوية والبحث عن أعطال Bugs فى برنامج ما، ولكن فى مجالات أخرى مثل الطب يكون النظم الخبيرة مساعدا فعالا (وليس بديلا) عن الخبير البشرى.

1 6 الذكاء الاصطناعي وشبكة المعلومات الدولية Internet

فتح التطور الاستثنائي لشبكة المعلومات الدولية، أسواقا وفرصا للعمل لجميع الناس، ومكن من ربط قرابة 200 مليون مستخدم. ولقد وجد الذكاء الاصطناعي استخدامات جديدة في التطبيقات التي تعتمد على الشبكة المعلوماتية Internet. واستخدمت النظم الخبيرة والشبكات العصبية في التنبؤ اعتمادا على شبكة المعلومات الدولية . Internet. وقد تم تطبيقها في بعض الشركات عالمياً مثل.

- شركة Lucas Arts Entertainment تستخدم نظم خبيرة لمعالجة مشاكل العملاء لتخفيف الضغط على منظومة الهواتف للشركة.
- تعمل مؤسسة الاستنتاجات) على تسويق Inference Corporation (مؤسسة الاستنتاجات) على تسويق أنظمة دعم العملاء لأكثر من 500 شركة ومن ضمنها شركتي America On Line لاكتر من 500 شركة ومن ضمنها شركتي &Xerox
- تعمل النظم الخبيرة في شبكة Search Enginesعلى ترشيح أو انتقاء ما هو متاح بناء على رغبات عملاء آخرون لهم صفات مشابهة.
 - يستخدم مرشد البوم (مجلد) Album Advisor النعملاء بشرائها) بناء على الاختيارات الشخصية والتي يمكن الاختيار من بينها.
- يعمل برنامج Book Matcher في مستودع المطبوعات Amazon.Comحيث الانتقاء والخيارات المتاحة للعملاء يتم تكييفها بواسطة النظام اعتمادا على خيارات نفذها عملاء مماثلون.
 - قراءة العناوين لتصنيف الرسائل حيث تتم قراءة الرمز البريدي وتصنيفه.
 - قراءة الشيكات في البنوك للتعرف على قيمة ورقم الحساب.

- قراءة بطاقات الطائرات حيث يتم التعرف على رقم البطاقة والمقارنة مع قاعدة المعلومات الخاصة بالحجز.
- قراءات جوازات السفر حيث يتم قراءة الاسم وتاريخ الميلاد ورقم الجواز للمقارنة مع قاعدة البيانات.

الفصل الثاني

الشبكات العصبية الأصطناعية ونظم الذكاء الاصطناعي Artificial Neural Networks & Artificial Intelligence Systems

الفصل الثاني العصبية ونظم الذكاء الاصطناعي

مقدمة

لقد أصبح الذكاء الاصطناعي مثار الاهتمام الأكاديمي منذ أواخر الخمسينيات من القرن العشرين، إلا أنه مازال محل الاهتمام المتزايد وذلك لظهور العديد من التطبيقات العملية على المستوى التجاري، وكان من أهم أسباب التحول الناجح للذكاء الاصطناعي من الناحية الأكاديمية إلى التطبيق والتصنيع هو التطور الكبير والمتلاحق في مكونات الحاسبات الالكترونية.

ونظرا لأنه في العشرين سنة الأخيرة زادت سعة الذاكرة الرئيسية وسرعة المعالج زيادة مطردة حتى أصبحت الحاسبات الشخصية ذات قدرات وإمكانيات يمكنها القيام بعمليات أكثر تعقيداً والتي كانت تحتاج إلى وحدات هائلة من المعالجات.

وحاليا يمكن تحميل برامج الذكاء الاصطناعي على الحاسبات الشخصية ، والتي تعمل بكفاءة وقدرة هائلة مما أدى إلى زيادة انتشار برامج الذكاء الاصطناعي وتعددت التطبيقات الخاصة بها على مستوى الحياة العملية.

ويرى (1) د. صلاح الدين ود. محمد سامى أن الباحثين يجب أن يولوا عناية فائقة لتلك التقنيات الحديثة فى مجالات المعلومات والمعرفة والتكيف معها ، وذلك لأن الذكاء الاصطناعي ومجالاته المختلفة تمثل هدفاً للباحث ينبغي التركيز عليه، وجعل هذه التقنيات جزءاً من أدوات البحث العلمي وليس أداة مستقلة، مما يزيد من منفعة هذه الأدوات، والاستفادة منها في تفسير السلوك والتنبؤ به.

^{1 -} د. صلاح الدين عبد المنعم ود. محمد سامى راضى ، " تصميم نظام خبرة محاسبى لمراجعة وتقويم نشاط الاقراض المصرفى: دراسة نظرية " ، الادارة العامة ، المجلد السادس والثلاثون ، 1996 ، ص 177

ويرى (1) Barry G. Silverman أن الأبحاث والدراسات في بعض المجالات التطبيقية قد بدأت بداية مبكرة بالاهتمام بالذكاء الاصطناعي في مجال الحياة العملية وذلك لسببين رئيسين:

السبب الأول: هو تطور الذكاء الاصطناعي وتأثيره على موارد الإدارة

السبب الثاني: أن الذكاء الاصطناعي في مجال الحياة العملية يحتوى على المعرفة والعقلانية عند اتخاذ أي قرار معين ،ويؤكد ذلك بأنه منذ 1983 قام Michaelen and بعمل نظام خبير في بعض المجالات التطبيقية، ومنذ ذلك الحين توالت الأبحاث والدراسات التي تهتم بالذكاء الاصطناعي.

كما يؤكد ذلك ما ذكره (2) Kevin C. Desousza أنه فى المستقبل القريب سوف نجد الشبكات العصبية الذكية فى جميع المجالات من موارد بشرية وبحوث العمليات والإنتاج والتسويق والتخطيط الاستراتيجي، وذلك لما لها من قدرة على التعلم من خلال البيانات والمساهمة فى اتخاذ القرار وزيادة المعرفة.

ومن هنا نجد أن الأبحاث في الآونة الأخيرة تركزت نحو استخدام أساليب الذكاء الاصطناعي وذلك لما أثبتته من نتائج جعلت الباحثين والمهتمين بالتحليل والتخطيط يتجهون نحو استخدامها في المجال التطبيقي، بحيث لم تعد من الأدوات الأساسية في التقييم والتنبؤ، بل أصبحت جزءاً من نظام المعلومات.

ومن خلال هذا الفصل سوف نتعرف على الذكاء الاصطناعي وأنواعه وكيفية البناء المعماري للشبكة العصبية والتعرف على البحوث الحديثة التي تقترح استخدام الشبكات العصبية وكيفية الاستفادة منها في التنبؤ، فعند فهم الشبكات العصبية يستطيع المستخدم أن يقرر مدى استخدامها في نماذج التنبؤ، كما يستطيع التعرف على المزايا

^{1 -} Barry G. Silverman, "Expert Systems for Business", Addison-wesley publishing company, England, 990, p. 84 : p. 85

^{2 -} Kevin C. Desouza, "Modeling the Human Brain: Artificial Neural networks" p. 2 http://www.globalresearchbusiness.com/paperdis.php?pid=3259

والعيوب الخاصة بهذه النماذج ومقارنتها بالنماذج التقليدية الأخرى الأكثر نظرية والبعيدة عن الواقع العملي.

ينقسم هذا الفصل إلى الجزئيين التاليين:

1.2 الذكاء الاصطناعي والشبكات العصبية

2.2 التصميم الهيكلي للشبكة العصبية

1.2 الذكاء الاصطناعي والشبكات العصبية

Artificial Intelligence & Artificial Neural Networks

تهدف تكنولوجيا الذكاء الاصطناعي إلى تصنيع برمجيات تحاكى ذكاء الإنسان في حل المشاكل في المجالات المختلفة ، وكذلك تؤدى بعض وظائف ومهام المخ البشري ، ويعتمد تصميم تلك البرمجيات على علم الذكاء الاصطناعي ، وهو علم من علوم الحاسب الذي بذل فيه العلماء مجهودا وتطويرا يزيد كل يوم، والآن يهدف هذا العلم إلى تصميم نظم برمجيات ذكية لها القدرة على الاستنتاج والاستدلال والاستنباط والإدراك والتعلم والتعامل مع المعرفة (1).

وتلك البرمجيات الذكية تجعل من الحاسب ليس مجرد آلة الكترونية لتخزين واسترجاع البيانات وإجراء العمليات الحسابية بسرعة كبيرة ، بل حاسب يتميز بالذكاء وبالتالي أكثر قوة ونفعا للمجتمع، لذلك فإن الحاسبات الذكية لها القدرة على التنبؤ كما لديها القدرة على قراءة وترجمة النصوص وتمييز الأصوات والكلام والرؤية واستخدامها في التعرف على الإشكال وفهم الصور المرئية والتعامل باللغة الطبيعية مع مستخدمي الحاسب دون الحاجة لاستخدام لغات خاصة للحاسب.

> وسوف نتعرف من خلال هذا المبحث على مفهوم وأساليب الذكاء الاصطناعي وتقسيماته ومزايا وعيوب كل نوع وذلك فيما يلى:-

1.1.2 مفهوم وأساليب الذكاء الاصطناعي

ظهرت أساليب الذكاء الاصطناعي مع ظهور الجيل الخامس لتكنولوجيا الحاسبات في بداية الثمانيات وهو ما يعرف باسم جيل الذكاء الاصطناعي، والذي يشير إلى استخدام الحاسب لمحاكاة (أو تقليد) الذكاء البشرى، ثم قام اليابانيون في بداية التسعينات من القرن العشرين ببرنامج لتطوير الجيل السادس للحاسبات الذي يتميز بقدرات الحاسب ليس فقط لتقليد القدرات الذهنية للإنسان (الجيل الخامس) وإنما لتقليد القدرات العصبية للإنسان أيضا وهو ما يعرف باسم Neural Computer وهو الحاسب الذي يتعلم ويتخذ قرارات معقدة (1).

عرف الذكاء الاصطناعي بأشكال عدة منها ما اقترحه (2) Winston عام 1992 بأن الذكاء الاصطناعي كدراس للأفكار التي من الممكن للكمبيوتر أن يكون فيها ذكياً.

أما (3) Rich and Knight عام 1991 فقد عرفا الذكاء الاصطناعي بأنه دراسة كيف نجعل الكمبيوتر يعمل أشياء ذكية.

كما تعرف أساليب الذكاء الاصطناعي بأنها تكنولوجيا بناء آلات لها القدرة على محاكاة الإنسان في عمليات التفكير وتكوين الآراء وإصدار الأحكام والقدرة على التطور والتعلم. ولا تقتصر تلك الأساليب على بناء الآلات والأجهزة بل تتجاوز ذلك إلى تصميم وتطوير النظم والبرامج الالكترونية التي تضفي على تلك الآلات خاصية المحاكاة الإنسانية، وبدون تلك الآلات وبرامج الحاسب فإنه لا يمكنها القيام بعمليات تتصف بالذكاء (4).

^{1 -} د. أحمد حسين على حسين ، " أثر إستخدام النظم الخبيرة على مهام وأحكام المراجع " ، مجلة كلية التجارة للبحوث العلمية، كلية التجارة جامعة الاسكندرية (العدد الأول المجلد السادس والثلاثون 1999) ص53: :ص54

^{2 -} Winston P., "artificial intelligence", 1993 third edition, p. 3 http://www.cs.bham.ac.uk/~axs/misc/talks/setools-ailanguages.pdf

^{3 -} Rich E. & Knight K., " Artificial Intelligence Development Environments", p. 2 http://www.csd.abdn.ac.uk/Publications/Artificial_Intelligence_in_Business.pdf

^{4 -} Andriole, Stephen, "The Promise of Artifcial Intelligence", Journal of Systems Management, July 1985, P.1: 14

وإذا كان الذكاء الاصطناعي يوصف بأنه برنامج لديه بعض الطرق المحددة والتي تشبه تفكير الإنسان، فكلمة Artificial جاءت من اللاتينية واصلها Artificial فكلمة Make Something والتي تعنى صنع شئ ما Make Something الى Intelligence الى

وتتعدد استخدامات أساليب الذكاء الاصطناعي من مجرد أداء الأعمال الدقيقة أو الروتينية أو التى تتطلب جهداً كبيراً يفوق طاقة الإنسان إلى أداء ما يشبه التفكير الإنساني لمتخذي القرارات من إدراك وتقويم وحكم واختيار (2).

ولقد اعتمدت أساليب الذكاء الاصطناعي فى تطورها على محورين أساسيين هما المحور البحثي والمحور التطبيقي⁽³⁾.

المحور البحثى:

يتضمن البحوث والدراسات المرتبطة بالذكاء الاصطناعي ومن أهمها التفكير الإنساني ومقوماته من إدراك وتفكير واسترجاع للخبرات وتشغيل للمعلومات وتكوين للآراء، وكذلك عمليات اتخاذ القرارات ونمذجتها.

المحور التطبيقى:

ويهدف إلى تطبيق نتائج البحوث لإنتاج وتطوير الآلات والنظم والبرامج المعروفة باسم الذكاء الاصطناعي.

ومما سبق يتضح أن الذكاء الاصطناعي يوصف بأوصاف عامة هي(4):

- الذكاء الاصطناعي ذكي لأنه يتعلم
- الذكاء الاصطناعي يحول البيانات إلى معرفة
- الذكاء الاصطناعي يحل المشكلة بطريقة ذكية
- الذكاء الاصطناعي يتكيف مع البيئة ويجسدها حتى وان كان هناك نقصاً أو خطاً في البيانات

2 - Barry G. Silverman, op. cit., p. 17

^{1 -} Winston P., op. cit., p. 22:23

^{5 -} د. محمد فهمي طلبه، " الحاسب والذكاء الاصطناعي "، المكتب المصري الحديث، 1998، ص75

^{4 -} Rich E. & Knight K., op. cit., p. 23:27

2.1.2 الشبكات العصبية الأصطناعية

Artificial Neural Networks (ANNs)

يرى كلا من أساليب التحليل العلمي والنمذجة، حيث لا يوجد تعريف دقيق إلا أنه مثاليا جديداً من أساليب التحليل العلمي والنمذجة، حيث لا يوجد تعريف دقيق إلا أنه يمكن القول بأنها تعالج بطريقة تساعد على محاكاة وفهم طريقة معالجة النظم البيولوجية، وفي بعض الحالات يمكن أن تقلد بعض مظاهر الأنظمة البيولوجية من حيث السلوك أو التكيف أو التطوير ، بالإضافة إلى المستوى العالي من الارتباط بين عمليات المعالجة وتوزيع العناصر على مجموعة من الخلايا.

كما يرى (2) Kevin C. Desouza أن الشبكات العصبية الاصطناعية ما هي إلا محاولة لعمل نموذج واحد يشكل فقط أساسيات عمل الخلايا ، فهي تعالج المعلومات باستخدام آليات عديدة موزعة بطريقة بيولوجية على مجموعة من وحدات معالجة أو الخلايا.

ويرى (3) Martin and Peter إن الشبكات العصبية تقوم على أساس تقل ي أداء المخ البشرى عندما يقوم بعمليات معالجة المعلومات بطريقة بيولوجية، حيث تشتمل على أكثر من نموذج للعلاقات غير الخطية التي تحتوى على مجموعة من المدخلات والمخرجات ولا يوجد برنامج معين يتم تجهيزه ليتكيف مع نظم المعالجة في حل المشكلة ويكون قادراً على الاستجابة للتطورات البيئية للمعلومات.

فالشبكة العصبية الاصطناعية تتعلم من خلال الخبرات والحالات السابقة وعن طر عق التعديل في سلوك الشبكة وتدريبها لتستجيب مع البيئة التي تم التخطيط لها والتعرف على معلومات المدخلات المطلوبة (4).

3 - Martin Anthony & Peter Bartlett, " neural networks learning: theoretical foundations", London and caberra, march 1999, p. 7

¹ - Martin N. M. & Jain L. C., "Fusion of Neural Networks, Fuzzy Sets, and Genetic Algorithms", CRC Press: Boca Raton, London, New York, Washington, 1999, p. 7

^{2 -} Kevin C. Desouza, op. cit., p 4

^{4 -} Wily john & Stuttgart B. & Teubner, "architectures and electronic implementation of neural networks models", chichester: new york, 1998, p. 18

كما أن اسم الشبكات العصبية الاصطناعية يعطى القارئ الإحساس بأنها ترتبط بدراسة العمليات الرياضية فقط ولكن هذا الاحساس ليس له أساس من الصحة.

ويذكر (1) Kate ان نماذج الشبكات العصبية تعتبر نوعاً جديداً من نماذج الذكاء الاصطناعي Artificial Intelligence Models بحيث يمكن استخدام مجموعة من برامج الحاسب المصممة بشكل مختلف عن النظم الخبيرة Expert Systems في التعرف على بعض الأنماط مثل توقيعات العملاء المتعاملين مع البنوك، والتنبؤ بظاهرة ما استناداً على مجموعة غير كاملة أو غير دقيقة من البيانات.

وتعمل الشبكات العصبية بطريقة موازية للنظم الحيوية، حيث تقوم بعملية جمع المعلومات وترتيبها وتخزينها للاستفادة منها في تفسير بعض الإشارات التي تتلقاها من المحيط الخارجي أو اتخاذ قراراً ما من القرارات⁽²⁾.

وتعد نماذج الشبكات العصبية إحدى علامات التطور في استخدام أساليب الذكاء الاصطناعي في المجالات التطبيقية، حيث تستطيع هذه النماذج التغلب على العديد من القيود التي تحيط باستخدام النظم الخبيرة والتي تتمثل في (3):

- اقتصار تعامل النظم الخبيرة مع مجموعة محددة من المشاكل التى يراد التوصل الى أفضل حل لها، والتي يتوافر لها قاعدة معرفة Knowledge Base وبالتالي لا يمكنها التعامل مع ما يستجد من مشاكل لا يتوافر لها قاعدة معرفة.
 - ارتفاع التكلفة وزيادة الوقت اللازمين لتصميم النظم الخبيرة نتيجة لتجميع مجموعة القواعد القرارية من الخبراء المتخصصين في المجالات المختلفة.
 - يتطلب الأمر تعديل قاعدة المعرفة التي تستخدمها النظم الخبيرة وتعديل القواعد المستخدمة لتحليل المشكلة أو التعرف عليها وذلك في حالة تغير هيكل المشكلة.

^{1 -} Kate A. Smith, "neural networks for business", Idea Group publishing, 2002, p. 7 ftp://ftp.bs.monash.edu.au/staff/ksmith/cor2000.pdf

^{2 -} Clarence N W Tan, "An Artificial Neural Networks Primer with Financial Applications Examples in Financial Distress Predictions and Foreign Exchange Hybrid Trading System", p. 5 www.smartquant.com/references/ NeuralNetworks/neural28.pdf

^{3 -} Miklos A. Vasarhelyi & Alex Kogan, op. cit., p. 51

1.2.1.2 مزايا وعيوب الشبكات العصبية

الشبكات العصبية تتميز بسهولة البناء والتعامل حيث تتعامل مع كميات كبيرة من البيانات والتي بها نسبة كبيرة من عدم الوضوح، فهي مناسبة في حل المشاكل غير الخطية، كما تستخدم في حل المشاكل التي تتطلب خبرة معينة قد تكون غير متاحة أو عندما تكون القواعد غير معروفة.

فالشبكات العصبية تتكيف مع المشكلة من خلال عملية التدريب، حيث تستطيع التعامل مع بيئة متغيرة تتميز بالديناميكية (1) ،فهي تستطيع التعامل في حالة وجود نقص في البيانات أو عندما تحتوى على بيانات مشوشة، كما أن عملية التدريب للشبكة العصبية تتم بشكل ذاتي حيث تدرب نفسها بشكل بسيط نسبياً قبل معالجة البيانات، ويتضمن ذلك البيانات المختارة لتمثيلها على الشبكة العصبية.

إلا أن البعض يرى أن الشبكة العصبية ما هي إلا حالة خاصة من النماذج الإحصائية، وكما هو معروف فإن النماذج الإحصائية تلتزم بقواعد إحصائية محددة وهذا ما لا تستخدمه الشبكة العصبية (2).

ومما يميز أسلوب الشبكات العصبية عن الطرق الإحصائية التقليدية قدرتها العالية على نمذجة العلاقات غير الخطية المعقدة كما يتميز أسلوب الشبكات العصبية عن الأسلوب الإحصائي التقليدي في بناء نماذج الانحدار بعدم حاجتها إلى اقتراح أو استخدام أية نماذج افتراضية مسبقة لتمثيل البيانات، فإذا كانت هناك علاقة رياضية ما بين المتغير التابع والمتغير المستقل فان أسلوب الشبكة العصبية سوف يحدد هذه العلاقات من خلال عملية تعلم خاصة به تمر بعدة مراحل من التنقيح والترشيح الذي يتناسب في النهاية مع هذه البيانات وعلاقة المتغيرات فيما بينها.

كما يتطلب الأسلوب الإحصائي التقليدي دراسة المشكلة ومعرفة العلاقة بين المتغيرات وتحديدها قبل البدء في بناء النماذج المناسبة لها، وبالتالي فهو يتطلب دراسة

^{1 -} Valluru R. & Hauagriva, "C++ Neural Networks & Fuzzy Logic ", McGraw-Hill Publishing, 1996, p.6: 9

^{2 -} Ibid. p. 11

التوزيعات الاحتمالية للمتغيرات وتحديد الفروض الخاصة بالنموذج الإحصائي المقترح.

كما يتميز أسلوب الشبكة العصبية بقدرته على تعرف النمطية واكتشاف العلاقات الخفية بين المتغيرات من خلال البيانات المتاحة واستخدامها في بناء القرارات وترشيدها.

2.2 التصميم الهيكلي للشبكة العصبية

1.2.2 التطور التاريخي للشبكات العصبية

طبقا لما ذكره (1) Tomas عام 2001، فإن المحاولة الأولى لتفهم المخ البشرى ترجع إلى قرون من الزمن، فهو يستشهد على ذلك بالمعلومات التى وردت من قبل كلا من Fischler & Fieschein عام 1987، حيث وجدوا ورقاً (بردى) منذ حوالي 3000 سنه قبل الميلاد يوصف فيه المواقع الحسيه والحركية فى مخ الإنسان (2). ولقد قام فلاسفة اليونان القدماء أمثال أرسطو و بلاتو Aristotle & Plato بدراسة مخ الإنسان وكانت هذه الدراسات محددة بسؤال فلسفي هل الجسم والعقل شئ واحد، وذلك في بداية كتابتهم عن الذكاء الاصطناعي، حيث كانت الفلسفة احد فروع المعرفة التى تختص بدراسة معيشة الفقراء والذين ليس لديهم حداً أدنى من حق الملكية.

وهذه كانت حقيقة مؤكدة بالنظرية الحديثة وتقييم تطور الشبكات العصبية الإصطناعية، فالتطور التكنولوجي مكننا من دراسة أعمال المخ والتي لم تكن متوفرة حتى أواخر القرن التاسع عشر.

ومنذ ذلك الحين أخذت الشبكات العصبية طريقها إلى الشّهرة، ولقد قسم Clarence مراحل تطور ها العصبية إلى أربع فترات متميّزة من مراحل تطور ها حتى أصبحت في صورتها الحالية، كما اتفقا معه في ذلك التصنيف (4) Jain إلى الفترات الآتية:

- الفترة الأولي (1980-1969) The Age of Camelot
 - الفترة الثانية (1882-1969) •
 - الفترة الثالثة (1986-1982)
- الفترة الرابعة (Current -1986)

^{1 -} Tomas E. Nordlander, "AI Surveying: Artificial Intelligence In Business", p. 7 www.csd.abdn.ac.uk/~tnordlan/Publications/Artificial_Intelligence_in_Business.pdf

^{2 -} Ibid., p. 9

^{3 -} Clarence N. W., op. cit., p. 15:16

^{4 -} Martin N. M. & Jain L. C., op. cit., p. 6:8

الفترة الأولى (1890 – 1969):

بدأت الفترة الأولى فى أواخر القرن التاسع عشر مع مجئ العلم الحديث والسعي لفهم أعمال العقل البشرى، ومع استمرار التطور التكنولوجي أصبح علماء النفس والأحياء قادرين على دراسة كيف يعمل العقل البشرى اكثر من _ لماذا ؟ . وأهم الكتابات عن الشبكات العصبية الاصطناعية هو كتاب William James عام 1890وهو البداية الحقيقية لهذا الموضوع وهذا الكتاب يحتوى على بادرة للنظريات الحالية.

كما أن الإنجاز الكبير الذى حدث عام 1943على أيدى McCulloch & Pitts حيث قدما نموذجهما الأول " نظم الخلية العصبية " وقد اعتمدا على معرفة التركيب البيولوجي للخلية، وتميز هذا النموذج بأنه قادر على أن يحل أى عدد من التعبيرات المنطقية المحددة.

ولقد بلغت هذه الفترة ذروتها سنة 1958 عندما قام Rosenblatt بنشر بحث عرف فيه الشبكات العصبية باسم " Preceptron " فقد كان Preceptron مهتما بطريقة أداء وظائف العين وبنى عليها نموذج Preceptron والتى تتكون من نيرون واحد فقط بترجيحات اشتباكية متوافقة، ولقد دمج بين التعلم القائم على أساس McCulloch-Pitts Neural وطريقة Hebbian Learning Rule" وطريقة Model والمهام التى أستخدمها النموذج في حلها من المشاكل البسيطة مثل تصنيف مجموعات من الأنماط الهندسية والأبجدية.

ولقد أنبهر المهتمون بشبكات الذكاء الاصطناعي بالنجاح الكبير الذي حققه هذا النموذج واعتبروه الدواء الحاسم لكل المشاكل في ذلك الوقت ، ولقد شارك كلا من Widrow & Hoff سنة 1960 وقاما بتقديم نموذج الخلية الوحيدة المعروفة باسم ADALINE والتي اعتبرت أول شبكة عصبية استخدمت في التطبيقات العلمية ، واستخدمت بعد ذلك في إلغاء صدى الصوت من على خطوط التليفون ، ولقد استخدم هذا النموذج طريقة التعلم المعروفة باسم Delta Rule والتي تتضمن تقليص الخطأ من خلال الهبوط التدريجي والهبوط شديد الانحدار.

الفترة الثانية (1969 - 1982):

حين نشر Marvin Minsky & Samuel Papert عام 1960 كتاب عن الخلايا Perceptron واثبتا أن الشبكات العصبية ككل لا تستطيع حل مشاكل حقيقية وذلك لكونها نموذجاً خطياً بسيطاً بدون أي طبقات مختفية، ولقد أدى ذلك إلى انخفاض التمويل على هذا النوع من الأبحاث واتجه عدداً من الباحثين نحو متابعة التطورات التكنولوجية، حيث توقعوا بأنهم في حاجة إلى مزيد من الوقت لتطوير الأفكار في هذا المجال.

الفترة الثالثة (1982 – 1986):

تميزت هذه الفترة بأن أزداد اهتمام جهود الباحثين أمثال:

جامعة	الباحثين
Stanford University	David Rumelhart
Boston University	Stephen Grossberg
Finland	Teuvo Kohnen
Japan	Kunihiko Fukushima

هؤلاء الباحثون وغيرهم الذين ثابروا في بحثهم عن الشبكات العصبية الاصطناعية حيث بدأ عملهم منذ أوائل 1980، حين ظهرت العديد من البحوث عن الشبكات العصبية الاصطناعية وتعتبر هذه الفترة فترة انبعاث، ففي عام 1984 قدم Hopfield بحثا إلى أكاديمية العلوم لتطبيق الشبكات العصبية لحل مشكلة من أشهر المشاكل في ذلك الوقت وهي "'(Traveling Salesman Problem (TSP)" وكان هذا النموذج المبشر التدريجي لزيادة اهتمام الباحثين ، وزيادة البحوث في مجالات كثيرة وسارع علماء الأحياء وعلماء النفس والعلوم الأساسية والهندسية بالدخول في هذا المجال.

الفترة الرابعة (Current – 1986):

وأبرز ما تميزت به هذه الفترة أن أصبحت المفاهيم والأساسيات عن الشبكات العصبية واضحة ومفهومة كما أصبحت متوفرة وظهر العديد من التطبيقات في مختلف المجالات والمهام الصعبة كما استخدمت في التطبيقات العلمية والهندسية على نطاق واسع.

ومع التطورات الهائلة في تقنيات الحاسبات وانخفاض تكاليفها، تم التطوير في التطبيقات بحيث أصبحت الشبكات العصبية الاصطناعية من التطبيقات سهلة الاستخدام والتي تستخدم على مستوى عالمي وفي اغلب المجالات.

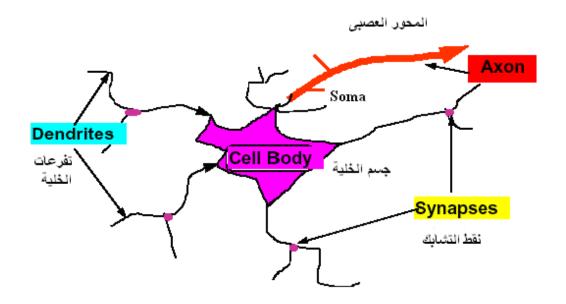
2.2.2 الخلفية البيولوجية

استمدت الشبكات العصبية الاصطناعية تركيبها من العلوم البيولوجية، وخصوصاً علم Neurological فهي مستمدة من الشبكات البيولوجية بشكل رئيسي في هندستها المعمارية.

Neurons فالخلايا الموجودة داخل مخ الإنسان والنظام العصبي يعرفان باسم والمعلومات أو الإشارات التى ترسل للخارج من خلال المحور العصبي بين الخلايا Axons ، وتستقبل المعلومات من خلال تفرعات الخلايا Dendrites ، و مخ الإنسان يتضمن مائة بليون خلية (جسم الخلية) Soma وأكثر من ($(10)^{14}$ نقاط التشابك Synapses التي تربط بين هذه الخلايا ، ومن خلال التعلم ووظائف الذاكرة تنشأ Synapses جديدة (10).

^{1 -} Christos Stergiou & Dimitrios Siganos, "Neural Networks", p. 2 : 4 http://www.doc.ic.ac.uk/sur

فالخلايا في مخ الإنسان تنظم في شكل عنقودي حيث تشارك مئات الآلاف من الخلايا في أداء المهمة التي تقوم بها والشكل التالي يوضح تركيب الخلية وتوصيلها⁽¹⁾.



شكل (2-1) تركيب الخلية العصبية الطبيعية

- (Cell Body) Soma جسد الخلية 1
 - Dendrites عنت الخلية 2
 - 3 المحور العصبي Axon
 - Synapses نقاط التشابك _ 4

1 - Ibid., p. 17

3.2.2 مقارنة بين طرق استخدام الشبكات العصبية الاصطناعية والطرق التقليدية

تختلف طرق الشبكات العصبية الاصطناعية عن الطرق التقليدية من حيث بناء النظام حيث لا يتطلب كتابة برنامج، كما لا يتطلب بناء نظام معين ومعرفة القواعد اللازمة له أو عمل نموذج مطلوب يؤدى مهمة معينة كما في النماذج التقليدية، ففي الشبكات العصبية الاصطناعية يتطلب النظام التعلم من العينات السابقة للبيانات، بنفس الطريقة التي يستخدمها المعلم عندما يعلم الطفل كيف يتعرف على الأشكال والألوان والحروف... الخ(1).

فالبناء الداخلي للشبكة العصبية يتم عن طريق تمثيل البيانات وبالعمل الجيد يتم إنشاء شكل النموذج الداخلي الذي يمكن استخدامه مع البيانات الجديدة التي لم يشاهدها النموذج من قبل⁽²⁾.

أيضا في الطرق التقليدية تتم معالجة المعلومات بشكل متسلسل بينما في الشبكات العصبية فإن معالجة المعلومات تتم بشكل متوازي، وهذا يتشابه مع أداء مخ الإنسان في معالجته للمعلومات، إلا أن المخ البشري يحولها بسرعة تصل إلى $(10)^{-2}$ مليون ثانية بينما يحولها النموذج بسرعة $(10)^{-2}$ نانو ثانية ، أي أن الشبكة العصبية أسرع مليون مرة من المخ البشرى، إلا أن المخ البشرى يعالج المهمة التي يقوم بأدائها بشكل أسرع وأكثر فعالية (3).

^{1 -} Clarence N. W., op. cit., p. 17:19

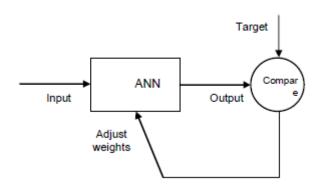
^{2 -} Miklos A. Vasarhelyi, op. cit., p. 72

^{3 -} Ibid., p. 75

4.2.2 التركيب الأساسى للشبكة العصبية الاصطناعية

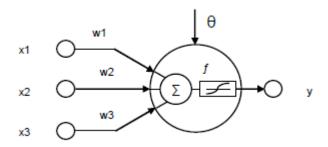
يذكر (1) Martin and Jain أن التركيب الأساسي للشبكة العصبية الاصطناعية يتضمن الخلايا الصناعية (والتي تشبه الخلية الطبيعية في المخ الإنساني) وتتجمع في مجموعة من الطبقات، فهناك طبقة إدخال واحدة، وطبقات مختفية، وطبقة مخرجات.

والشكل التالي يوضح مفهوم الخلية الاصطناعية البسيطة (2):



شكل رقم (2-2) simple ANN concept

كما يوضح الشكل التالى تركيب الخلية العصبية البسيطة

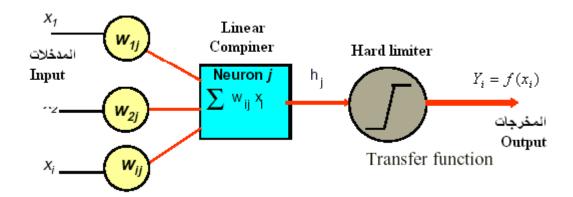


An artificial neuron (3-2) شكل رقم

^{1 -} Martin N. M. & Jain L. C., op. cit., p. 22:23

^{2 -} Ibid., p. 24

والشكل التالى يوضح تركيب الخلية العصبية الاصطناعية



شكل (2-4) تركيب الخلية العصبية الاصطناعية

ففي المخ البشرى، الخلايا تتصل ببعضها من خلال إرسال إشارات تنتج من تفاعلات كيميائية، ويتم إرسال هذه الإشارات إلى كل منها من خلال عملية ارتباط معقدة، وكذلك أيضا الشبكات العصبية الاصطناعية تعتمد على نفس المبدأ في محاولة التقليد لعملية التعلم للمخ البشرى الذي يستخدم خوارزمية معقدة.

وكل ارتباط له وزن أو ترجيح معين (weight)، وهذا الترجيح إما أن يأخذ قيمة موجبة أو قيمة سالبة مرتبطة بالخلية، فالترجيحات الموجبة هي التي تجعل الخلية نشطة بينما الترجيحات السلبق لا ترسل إشارة.

والشكل السابق يوضح تركيب الخلية العصبية الاصطناعية حيث يتم الإدخال من خلال خليا المدخلات الموجودة بالشبكة وتتكون من (x_1,x_2,\ldots,x_j) ولكل خلية ترجيح (weight) يأخذ القيم $(w_{1j},w_{2j},\ldots,w_{ij})$ لكل اتصال .

والخلية Neuron تجمع كل هذه الإشارات التى تستقبلها، ومع كل إشارة يتم ضربها فى ترجيح ما ، وتمر المخرجات (y_j) من خلال الدالة التحويلية Transfer في تكون الناتج (y_j) وذلك من خلال هذه الدالة التي تعطي النّاتج النّهائي (y_j) .

A – Kevin C. Desouza, op. cit., p. 6:8

B – Christos Stergiou & Dimitios Siganos, op. cit., p. 4:5

C – Kate A. Smith, op. cit., p. 11

^{1 -} for more see:

ويتم تعلم هذه الشبكة العصبية من خلال قاعدة الانتشار الخلفي - Back حيث تأخذ Propagation والتي تنفذ عن طريق الانتشار للأمام Feed-Forward حيث تأخذ كل عنصر من عناصر المدخلات في الشبكة العصبية وتضربه في ترجيح عند الاتصال بين خليتين أو نقطة اتصال، وتتم عملية الجمع لتعطى المخرجات.

فخوارزمية الانتشار الخلفي Back-Propagation تعمل على تقليل الخطأ داخل الشبكة، والترجيح على كل اتصال بين خليتين يتغير طبقاً لحجم الخطأ الأولى ، وتعاد البيانات مرة ثانية طبقاً لطريقة الانتشار للأمام لتعطى ناتجاً وخطأ جديدين ، ويتم تكرار هذه العملية حتى يصبح الخطأ مقبولاً فتقبل القيمة الجديدة (1).

D – Leslie Smit, " An Introduction to Neural Networks", p. 1:9 http://A/an Introduction to Neural Networks.htm/

^{1 -} Martin Anthony & Peter Bartlett, op. cit., p. 24

5.2.2 بناء الشبكة العصبية الاصطناعية

هناك ست خطوات أساسية في بناء الشبكة العصبية الاصطناعية (1):

أولاً: يتم تعريف البيانات وتمثيلها على الشبكة العصبية الاصطناعية بحيث تكون هناك مجموعة بيانات المدخلات والنتيجة المرغوب فيها .

ثانياً: تصنيف البيانات إلى مجموعة التدريب (التحقق) حيث تستخدم الشبكة العصبية هذه البيانات أثناء عملية تعلمها، فمجموعة التحقق تستخدم في اختبار النموذج ومدى قدرته على التنبؤ ومتى يصل لذلك يتوقف عن التدريب.

ثالثاً: تركيب الشبكة العصبية عن طريق اختيار عدد من الطبقات المختفية (Hidden عليه الشبكة العصبية عدد من الخلايا المختفية . Layers)

رابعاً: المعلمات Parameters تعرف وتجمع في مجموعات قبل عملية التدريب.

خامساً: تبدأ عملية التدريب وتتضمن حساب المخرجات من المدخلات والترجيحات ، وتستخدم طريقة الانتشار الخلفية Pack-Propagation في عملية التعلم .

سادساً: عملية التقييم والتي تحدد هل الشبكة العصبية تعلمت وإنها تستطيع أن تحل مثل هذه المشاكل ، وباختبار أدائها ،هل نحصل على نتيجة مقبولة ، فإذا حدث ذلك تصبح الشبكة العصبية قد تم تدريبها وأصبحت مستعدة للاستخدام . وعلى أية حال، ليس هناك قواعد ثابتة في تصميم الشبكة العصبية ، ولا عدد لمتغيرات، فعملية التجربة والخطأ يمكن أن تكون طويلة ولكنها تعطى خبرة في بناء نمو ذحاً حبداً .

^{1 -} for more see:

A – Wily John & Stuttgart B. & Teubner, op. cit., p. 25:32

B – Miklos A. Vasarhelyi, op. cit., p. 79:84

C – Clarence N. W., op. cit., p. 80:91

6.2.2 توصيف مختصر لمعلمات الشبكة العصبية الاصطناعية

أهم المعلمات التي تستخدم عند تصميم الشبكة العصبية الاصطناعية ما يلي(1):

1.6.2.2 معدل التعلم Learning Rate

معدل التعلم يحدد قيمة التصحيح التى على أساسها يتم التعديل فى ترجيحات الخلية أثناء عملية التدريب، فمعدل التعلم عبارة عن قيم صغيرة تزيد مع مرات التعلم (ما لم تنقص بالصدفة) حتى يصل الخطأ إلى أقل ما يمكن وبالتالي يصل الحل إلى الحل الأمثل. وعندما يتم إعطاء قيم كبيرة لمعدل التعلم ربما يتم التدريب أسرع ولكن كمية الخطأ تكون أكبر، فمعدل التعلم يتناسب حسب قيم الخطأ المتولدة (الناتجة).

2.6.2.2 القوة الدافعة 2.6.2.2

قيمة القوة الدافعة تحدد بحيث تكون أكثر من القيم التصحيحية السابقة، والتي يجب تذكرها ونقلها أثناء التدريب الحالي، فقيمة القوة الدافعة الكبيرة تكون أكثر تحديداً في الأماكن محددة الشروط.

3.6.2.2 مدخلات التشوش في البيانات 3.6.2.2

عشوائية التشوش في البيانات تستخدم لمعالجة الخطأ الموجود بالشبكة العصبية بحيث تكون الأخطاء خارج الحدود الدنيا للشبكة، كما تساعد الشبكة العصبية في عمل التنظيم ومنحنى التعلم المناسب.

A – Tomas E. Nordlander, op. cit., p. 30:37

B – Kate A. Smith, op. cit., p. 51 : 56

C – Christos Stergiou & Dimitrios Siganos, op. cit., p. 18:19

^{1 -} For more see:

Training and Testing Tolerances نسبة تجاوز التدريب والاختبار 4.6.2.2

نسبة تجاوز التدريب هي عبارة عن قيمة الدقة المطلوبة على الشبكة خلال مرحلة تعلمها على مجموعة بيانات التدريب. أما نسبة تجاوز الاختبار فهي عبارة عن قيمة دقة النتائج المتنبأ بها على الشبكة بناء على بيانات الاختبار.

5.6.2.2 تحديد معايير التقييم Determining an Evaluation Criteria

عند تصميم الشبكة العصبية لحل مشكلة معينة، فإنها تحتاج إلى عناية خاصة عند تحديد معايير التقييم، حيث يتم ذلك من خلال العناية بتحليل المشكلة المعروضة، والعناصر الرئيسية لها وجميع المعالجات ودور الشبكة في هذه العملية.

7.2.2 المظاهر التقنية والإحصائية للشبكة العصبية الاصطناعية

1.7.2.2 نماذج الشبكة العصبية الاصطناعية

ذكر (1) Clarence أنه توجد العديد من النماذج اللانهائية من طرق تنظيم الشبكة العصبية الاصطناعية، على الرغم من إنه يوجد نموذجان فقط هم الأكثر استخداما. Architecture و Neurodynamics

Neurodynamics: النموذج الأول

يشير إلى الخصائص الفردية لكل خلية عصبية، والتي تتكون من الآتي:

1 _ مزيج من عناصر المدخلات

فطبقة المدخلات في الشبكة العصبية تؤدى وظيفة بوابة المدخلات، ونقلها إلى الطبقة التالية، ومعالجة المدخلات تتطلب توزيع بيانات عددية على الشبكة العصبية.

2 _ ناتج المخرجات

تتشابه مهمة طبقة المخرجات مع نفس مهمة طبقة المدخلات إلا أنها هي التي تنقل المعلومات من الشبكة إلى العالم الخارجي ، فبعد عملية المعالجة لبيانات المخرجات تتطلب تحويلها إلى معلومات مفهومة وصالحة للاستعمال من على الشكل الخارجي للشبكة العصبية ويمكن قراءتها .

(Transfer Function) عنوع الدالة التحويلية

إن مهمة الدالة التحويلية عبارة عن تحديد قيمة المخرجات من خلال دالة تجميع ترجيحات المدخلات في الخلية ، وغالبا ما تكون الدالة التحويلية في الطبقات المختفية غير خطية العلاقة ويتم حسابها طبقا للمعادلة الآتية(2):

$$\mathbf{Y}_{f} = f_{f} \left(\sum_{i} w_{ij} \mathbf{x}_{i} \right)$$

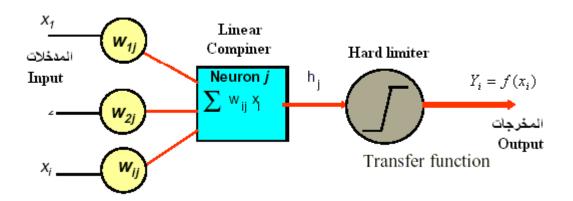
حيث

 y_j مخرجات الخلية y_j الدالة التحويلية للخلية x_i المدخلات x_i الترجيحات

^{1 -} Clarence N. W., op. cit., p. 93:98

^{2 -} Ibid. p. 94

ويمكن تصميم نموذج Neurodynamics للخلية كالاتي⁽¹⁾:



شكل (2-5) تصميم نموذج الدالة التحويلية

وناتج الدالة التحويلية (دالة التنشيط) يأخذ المدى من صفر إلى الواحد ويشار إلى ذلك بالمعادلة التالية⁽²⁾

$$Y = \begin{cases} 0, & \text{if } x < 0 \\ \\ +1, & \text{if } x \ge 0 \end{cases}$$

$$Y = \sum_{i=1}^{n} \chi_{i} \quad W_{i}$$

^{1 -} Ibid., p. 95

^{2 -} Ibid., p. 96

4 - الترجيحات (تهيئة الترجيحات وترجيح خوارزمية التعلم)

الترجيحات الأولية على الشبكة العصبية غالبا ما تكون عشوائية أو باستخدام خوارزمية يتم تحديدها، ويتم تحديد خوارزمية التعلم التى يكون ترجيحها متغيراً وهى عادة تعتمد على حجم الخطأ على الشبكة والذي يعطى الهدف المطلوب، فالهدف من خوارزمية التعلم هو تقليل الخطأ إلى قيمة مقبولة. وخوارزمية الانتشار الخلفي Back-Propagation من أكثر الطرق استخداماً في الشبكة متعددة الطبقات.

النموذج الثاني: هيكلة الشبكة والتي تتضمن الخصائص الأساسية التالية: يشير إلى هندسة ومعمارية الشبكة والتي تتضمن الخصائص الأساسية التالية:

1 - أنواع الترابط بين الخلايا العصبية

يمكن القول بأن الشبكة العصبية تم توصيل جميع عناصرها بالكامل، إذا كان ناتج كل خلية متصلاً بالخلايا الأخرى في الطبقة التالية. وعندما تتصل بهذا الشكل تعطى إشارة في اتجاه خلايا المخرجات التي في الطبقة التالية وتسمى هذه الطريقة بالتغذية الأمامية .Feedforward Network

أما التغذية العكسية Feedback Network فهي تسمح للمخرجات أن تصبح هى المدخلات في الطبقة السابقة. أما الشبكة التي تعمل في حلقة مغلقة Recurrent ترسل إشارات إلى جميع الخلايا الموجودة بالشبكة، وهناك أيضا التغذية الجانبية Feedlateral Connections والتي ترسل بعض المدخلات إلى الخلايا الأخرى التي في نفس الطبقة.

وتعتبر الطريقة بالتغذية الأمامية Feedforward Network أسرع من التغذية العكسية Feedback Network فهي تتطلب إرسال إشارة واحدة لتعطى حلاً أمثل، كما تستخدم مع الشبكة متعددة الطبقات Multi-Layer Perceptrons.

2 _ عدد الخلايا المختفية

عدد خلايا المدخلات والمخرجات يتم تحديدها على أساس التطبيق المتاح، أما الخلايا المختفية فيتطلب تحديدها استخدام دالة للحساب تعرف باسم Nonseparable ومع ذلك لا توجد قاعدة ثابتة لتحديد عدد خلايا الطبقات المختفية، إلا أنه يوجد بعض القواعد التي يقترحها بعض الباحثين عند بناء هيكلية الشبكة العصبية، ويذكر (1) Miklos بعض الآراء التي تقترح عدد الخلايا المختفية منها:

- أقتراح Shin سنة 1994 أن تكون هيكلية الشبكة في شكل هرمي بحيث يكون العدد الأكبر للخلايا في الطبقات الأولية وفي كل مرة تقل عدد الخلايا عن الطبقة السابقة وذلك حتى آخر طبقة.
- أما Azeff فقد أوصى بأن تكون عدد بيانات التدريب على الأقل عشر مرات من الترجيحات وأيضا عدد الخلايا المختفية تساوى (1+1) حيث N هى عدد خلايا المدخلات .
 - أما Lawrence فقد أعطى شكل المعادلة التي تحدد عدد الخلايا المطلوبة على الشبكة وهي كما يلي:

عدد الخلايا المختفية = بيانات عينة التدريب × مدى الخطأ المقبول

- كما اقترح كل من Haussler & Baum أن يكون عدد الخلايا في الطبقات المختفية محسويا بالمعادلة التالية:

$$j=\dfrac{me}{n+z}$$
حيث $j=a$ عدد الخلايا في الطبقة المختفية $m=a$ عدد مجموعات التدريب e = الخطأ المقبول e = عدد خلايا المدخلات e = عدد خلايا المخرجات

1 - Miklos A. Vasarhelyi, op. cit., p. 104 : 109

(Hidden Layers) عدد الطبقات المختفية

ويذكر Miklos A. Vasarhelyi أن كلا من McCllagh و Nelder اقترح أن تكون عدد الطبقات المختفية ثلاث طبقات كحد أقصى ، وذلك فى حالة البيانات غير الكافية أو التى يوجد بها تشويش ، أما فى حالة البيانات التى تمثل سلسة واضحة ولا يوجد بها تشويش فى هذه الحالة نستعمل طبقة مختفية واحدة (1).

2.7.2.2 التعلم Learning

يعتمد التعلم على تعديل الترجيحات النسبية لعقد الاتصال ما بين عناصر المعالجة (الخلايا) التي تكون بمجموعها الشبكة العصبية لخلق التجانس الأفضل بين المدخلات والمخرجات، ويتم ذلك على مرحلتين (2):-

المرحلة الأولى: حيث تبدأ المرحلة الأولى بتدريب الشبكة العصبية باختيار عشوائي للقيم الابتدائية للترجيحات النسبية بين عقد الاتصال.

المرحلة الثانية : تقوم الشبكة بإجراء عدة عمليات حسابية وذلك من خلال تطبيق خوارزمية التعلم.

فالتعلم هو عملية تعديل الترجيحات على الشبكة العصبية نتيجة للإدخال الخارجي⁽³⁾. ويوجد ثلاث أنواع للتعلم⁽⁴⁾:

^{1 -} Ibid., p. 114

^{2 -} Steven Walczak, "An Empirical Analysis of Data Requirements for Financial Forecasting with Neural Networks", p. 206 : 208 http://carbon.cudenver.edu/~swalczak/jmis01.pdf

^{3 -} Martin N. M. & Jain L. C., op. cit., p. 22

^{4 -} For more see:

A – Valluru & Hayagriva, op. cit., p. 115 : 119

B – Tomas E. Nordlander, op. cit., p. 140: 143

النوع الأول: التعلم الإشرافي Supervised Learning

يعتبر إلى حد كبير النّوع الأكثر شيوعاً لتعلم الشبكة العصبية، حيث تتطلّب بعضاً من العينات التى تستخدم لخدمة النموذج، و كل عينة من مجموعة التدريب تحتوي على قيم إدخال مع قيم المخرجات المطلوبة، والشبكة سوف تقوم بحساب النّاتج المطلوب من مجموعة المدخلات المعطاه لكل عينة، كما تقوم بتقليل خطأ المخرجات بحيث تكون المخرجات قريبة من الهدف المطلوب. وهي محاولات يتم عملها بشكل مستمر لتعديل الترجيحات خلال عملية التعلم التي تتم للشبكة العصبية.

النوع الثاني: التعلم غير الإشرافي Unsupervised Learning وأحيانا يسمى التعلم ذاتي الإشراف ولا تتطلّب مخرجات واضحة لقيم التدريب، فكل عينة مدخلات على الشبكة تفترض أن تعود إلى تصنيف متميّز، لهذا فعملية التدريب تأخذ تدريباً أقل على الشبكة لتغطى هذا التصنيف، وهذا النوع من التعلم غير منتشر ولا يستخدم بشكل كبير مع التطبيقات في الحياة العملية.

النوع الثالث: التعلم التعزيزى Reinforcement Learning وتسمى طريقة التعلم المختلطة والتي لا نعطيها المخرجات المرغوبة على الشبكة، ولكن الشبكة تخبرنا بقيمة المخرجات المحسوبة والتي تتمشى مع الاتجاه الصحيح للمدخلات وهذا النوع أيضاً لا يستخدم في المجالات التطبيقية.

3.7.2.2 خوارزمية التعلم

تأخذ خوارزمية التعلم بحساب مجموع الترجيحات $\{W_{ij}\}$ للاشارات الداخلة ثم بمقارنة النتيجة بقيمة البداية $\{\theta_j\}$ ويتم ذلك من خلال المعادلة التالية(0):

$$Y = sign\left[\sum_{i=1}^{n} x_i w_i - \theta\right]$$

حيث sign ترمز الى دالة الاشارة sign Function

$$y_{sign} = \begin{cases} +1, & \text{if } x \ge 0 \\ \\ -1, & \text{if } x < 0 \end{cases}$$

ويوجد العديد من خوارزميات التعلم (قواعد) شائعة الاستخدام، مثل قاعدة الانتشار الخلفي Back-Propagation

ويتم حساب التغيير في الترجيحات باستخدام المعادلة الآتية:

$$\Delta w Y = \eta x_i e_i$$

 $(0<\eta<1)$ حيث معدل التعلم وهي ثابت موجب g_i معدار الخطأ في الخلية g_i

$$e_j = \hat{Y}_j - Y_j$$

حيث $\stackrel{\wedge}{Y}$ هي المخرجات الحقيقية و $\stackrel{\wedge}{Y}$ هي المخرجات المطلوبة.

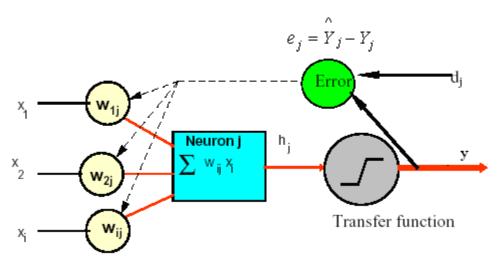
^{1 -} For more see:-

A -Daniel Klerfors, "Artificial Neural Networks", p. 1:12 http://hem.hj.se/~de96klda/NeuralNetworks.htm

B - Leslie Smith, "An Introduction to Neural Networks",p. 1:9 http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html

C – Bose N. K. & Liang P.," Neural Networks Fundamentals with Graphs, Algorithms, and Applications", Tata McGraw-Hill Publishing,1996, p. 219: 221

أى أن خوارزمية الانتشار الخلفي Back-Propagation تستخدم على نطاق واسع في خوارزميات التعلم بمعظم بحوث الشبكات العصبية وتعتبر من أكثر القواعد شهرة لسهولة تصميمها وإعدادها وتقوم بحساب الخطأ على مستوى كل خلية كما في الشكل التالى:



شكل (2-6) تصميم خوارزمية الانتشار الخلفي

فالمخرجات \mathbf{Y} تحسب من مجموعة المدخلات \mathbf{X}_{i} من خلال المعادلة الآتية

$$Y_j = step \left[\sum_{i=1}^n \chi_{ij} W_{ij} - \theta \right];$$

حيث:

 ${f N}$ عدد المدخلات في البرسيترون. ${f Y}_i$ هي المخرجات الحقيقية في الجولة ${f Y}_i$

$$W_{i(j+1)} = W_{ij} + \Delta W_{ij},$$
$$\Delta W_{ij} = n, \eta_{ij} \theta;$$

ومن خلال هذه الدالة التحويلية يتم حساب الخطأ وعلى أساسه يتم تعديل الترجيحات مرة أخرى حتى تصل إلى اقل خطأ ممكن، فكفاءة النماذج الرياضية تقدر بمدى قدرتها على تمثيل الواقع وقدرتها على التنبؤ بالقيم المستقبلية بأقل خطأ ممكن.

حاول الباحثون التعرف على تصميم وبناء الشبكة العصبية، وكيف بدأ ذلك حيث استخدم تعبير الشبكات العصبية لأول مرة سنة (1890، ثم تلا ذلك مؤتمرات وأبحاث عرض فيها عدد من الباحثين من مجالات مختلفة (رياضية، إحصائية، محاسبية، اقتصادية، زراعية... الخ) من مختلف المعاهد العلمية والهيئات، أبحاث متنوعة تقوم على استخدام أسلوب الشبكات العصبية كأداة للتنبؤ.

ولقد تنوعت طبيعة المشكلات التي تناولتها هذه الأبحاث فكان من بينها أبحاث عن دورة المحاصيل الزراعية، تخطيط العمليات العسكرية، توزيع السفن على المواني، التدفق السلعي، حجم المعاملات المالية في البورصة، الفشل المالي،... إلى غير ذلك من المجالات، وقد تبدو هذه المشكلات وكثيراً غيرها على درجة كبيرة من التباين بحيث يكون من الصعب توقع امكانية قيام الشبكات العصبية بحلها جميعا مستخدمي ن نفس الأسلوب.

الفصل الثالث تطبيق الشبكات العصبية الأصطناعية في التنبؤ بالأحمال الكهربائية

الفصل الثالث تطبيق الشبكات العصبية في التنبؤ بالأحمال الكهربائية

مقدمة

لإحداث التناسق بين القسم النظري والقسم التطبيقي تم استخدام أسلوب الشبكات العصبية في التنبؤ بالأحمال الكهربائية على مستوى المحطة الكهربائية، حيث تم تهيئة البيانات المجمعة من خلال نظام المعلومات الذى تم تصميمه لهذا الغرض بحيث يسمح النظام بعملية التحديث أولاً بأول، مما يجعل الشبكة العصبية تعمل بدرجة وكفاءة عالية وعلى أحدث البيانات الموجودة، فعملية ربط نظام المعلومات بالشبكة العصبية يجعل الشبكة تتدرب على البيانات وتتعلم بشكل جيد ومستمر.

ولقد ركز البحث عند إنشاء قاعدة البيانات الخاصة بنظام المعلومات علي أن تكون بالشكل الذي تنسجم مخرجاتها مع مدخلات الشبكة العصبية دون وجود أي قيود بحيث لا تحتاج البيانات إلى تعديل، ولقد استخدم البحث برنامج متطور ويعمل بكفاءة عالية لبناء نموذج الشبكات العصبية، وهو يعمل مع البرامج الإحصائية بشكل متكامل بحيث يمكن أن تكون مخرجاته هي مدخلات لأي برنامج إحصائي مثل SPSS، وذلك عندما نريد عمل بعض العمليات الإحصائية على هذه المخرجات، كما يمكن أن نأخذ مخرجات البرنامج الإحصائي SPSS لتكون المدخلات إلى برنامج الشبكة العصبية.

ولأن أسلوب الشبكات العصبية من الأساليب الحديثة، ولقلة تداول البرامج الجاهزة فقد خصصنا مبحثا لعرض موجز عن البرنامج المستخدم وخطوات تشغيله، ومبحثاً آخر للبناء الهيكلي للنموذج المقترح وإدخال البيانات وتدريب وتعليم النموذج، أما المبحث الأخير فيتناول تحليل وتفسير النتائج، وعلى ذلك فإن هذا الفصل يتناول النقاط التالية:

- 1.3 البند الأول: البرنامج المستخدم وخطوات تشغيله
- 2.3 البند الثانى: البناء الهيكلى للنموذج وتهيئة البيانات وتدريب وتعليم النموذج
 - 3.3 البند الثالث: تحليل وتفسير النتائج

1.3 البرنامج المستخدم وخطوات تشغيله

1.1.3 التعرف على البرنامج

تعددت البرامج الجاهزة للشبكات العصبية, فقد قامت العديد من الشركات بإنشاء برامج جاهزة للتعامل مع الشبكات العصبية، وقد لاحظنا إنه يوجد على شبكة الانترنت العشرات من البرامج الجاهزة الخاصة بالشبكات العصبية لمئات التطبيقات ورغم توافر بعض هذه البرامج والتي يمكن تحميلها من على شبكة الانترنت وبدون مقابل share ware إلا أن هذه البرامج يعاب عليها بأنها تتعامل مع أمثلة محددة يتم إعطائها مع البرنامج أو إنها تتعامل مع عدد محدود من المتغيرات أو التي تتبع أسلوب تعليمي معين.

وبذلك اخترنا هذا البرنامج Neural Connection لما يتميز به من سهولة في الاستخدام كما إنه واسع الانتشار، ويرجع ذلك لارتباطه ببرنامج SPSS الإحصائي، ولقد صدر الإصدار الأول من برنامج Neural Connection عام 1987 ثم توالت بعد ذلك إصدارات أخرى، أضافت إليه الكثير من التحسينات مما جعلها من البرامج التي تتميز بالبساطة وسهولة الربط مع برامج الجداول الالكترونية فيستطيع التعامل مع عرامج الجداول الالكترونية فيستطيع التعامل مع عرامج البيانات ومنها Access.

وعلى ذلك يمكن تكامل نظام المعلومات المقترح مع نموذج الشبكة العصبية بشكل يجعل قاعدة البيانات فعالة والشبكة العصبية تعمل بكفاءة عالية، فمخرجات نظام المعلومات تكون مدخلات الشبكة العصبية.

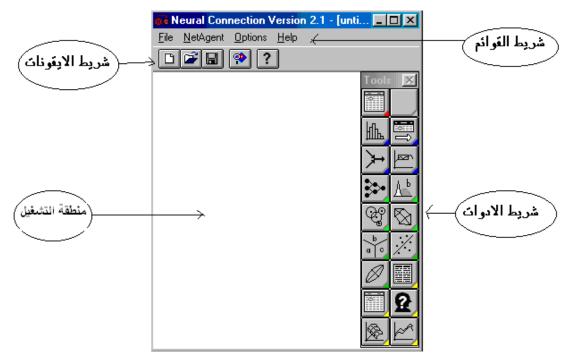
Neural Connection 2.1 برنامج 2.1.3

لكي يتم تحميل البرنامج لابد أن يتوفر:-

- Pentium ذو معالج PC جهاز كمبيوتر شخصي P
 - 2 ذاكرة 4MB RAM كحد أدنى
 - 3 _ مساحة فارغة على القرص الصلب نحو 4MB
 - 4 شاشة VGA أو SVGA
- 5 يتعامل مع بيئة Windows 9X أو Windows 2000 أو Windows 4

3.1.3 تشغيل البرنامج

وبعد الانتهاء من تحميل البرنامج نستطيع تشغيل البرنامج من قائمة " إبدأ Start " ثم بعد ذلك نختار " Neural Connection تظهر الشاشة الخاصة بالبرنامج وهي كما يلي



شكل (2-1) الشاشة الافتتاحية لبرنامج Neural Connection

وتتكون هذه الشاشة من:

WorkSpace منطقة التشغيل – 1

وهى منطقة فارغة نقوم فيها ببناء هيكل التطبيق الخاص المطلوب إيجاد الحل له من خلال الشبكات العصبية ولكى يتم بناء هيكل التطبيق لابد أن يتبع الآتى:-

- أن يبدأ هيكل البناء بوحدات الإدخال
- أن ينتهى هيكل البناء بوحدات الاخراج
- هيكل البناء يجب ألا يحتوى على ربط من الإخراج إلى الإدخال
- يحتوى التطبيق على عناصر أخرى ما بين الإدخال والإخراج

2 - شرويط القوائم MenuBar:

يشيقل على جميع الأوامر والوظائف التي يسمح بها برنامج
Neural Connection وهي تشيقل على أربعة عناصر هي File, NetAgent, Options, Help

3 - شريط الأيقونات Toolbar Commands

يحتوى هذا الشريط على الأيقونات الأكثر استخداماً والتي تمكن المستخدم من أداء المهام بسرعة وهذه الأيقونات يمكن استخدامها من خلال شريط القوائم.

4 - شريط الأدوات Tools Palette

وهى عبارة عن مجموعة من الأدوات التي يعتمد عليها برنامج Neural Connection وهى عبارة عن مجموعة من الأدوات التي يعتمد عليها برنامج

- ـ المدخلات Input
- التصفية Filtering
- نموذج التنبؤ Forecasting Modeling
 - المخرجات Output

المدخلات Input:

يحتوى برنامج Neural Connection على أيقونة مدخلات يتم من خلالها إدخال البيانات مباشرة أو استيراد البيانات من برنامج آخر، حيث يسمح بالتعامل مع برامج كثير ة منها: و Excel وبرنامج SPSS وبرنامج على وقواعد البيانات على البيانات على المبيانات على البيانات عل

أما عن أنواع البيانات Data Type التى يمكن أن يتعامل معها وهي:
(Integer, Floating, Symbolic, Year Date, Day Date) وعند إدخال البيانات يتم تقسيمها إلى أربعة أقسام هي:

T = Training Data

X = Test Data

V = **Validation Data**

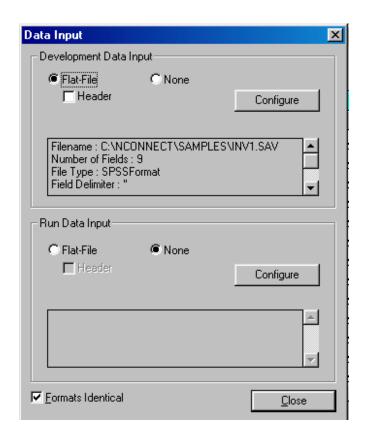
R = Run Data

والشاشة التالية تعرض جزء من شاشة الإدخال

Data Viewer - [Input development data]										
File Data Field	File Data Field Window									
		Float	1	Float I	Float	L	Float	-	Float	Т
		Day		month	Temp_max		Temp_min		Power_max	(
1	H	1.	.0	6.0	35.0) [17.	.5	1278	3.0
2	T	2.	.0	6.0	35.0)	17.	.5	1229	3.0
3	Т	3.	3.0		34.0	34.0		.0	1186.0	
4	Т	4.	4.0		36.0)	18.	.0	1252	2.0
5	T	5.	.0	6.0	38.5	5	19.	.0	1195	5.0
6	T	6.	.0	6.0	39.8	3	20.	.0	1125	5.0
7	Т	7.	.0	6.0	40.0)	20.	.0	1083	3.0
8	T	8.	.0	6.0	41.0)	20.	.5	1148	3.0
9	Т	9.	.0	6.0	42.0)	21.	.0	1194	1.0
10	Т	10.	.0	6.0	40.8	3	20.	.4	1116	5.0
11	Т	11.	.0	6.0	41.9	3	21.	.0	1163	3.0
12	Т	12.	.0	6.0	43.8	3	21.	.8	1159	1.0
13	Т	13.	.0	6.0	44.1		22.	.0	1194	1.0
14	T	14.	.0	6.0	45.2	2	22.	.5	1237	7.0
15	Т	15.	.0	6.0	44.3	3	22.	.5	1180).0

شكل (2-3) مجموعة البيانات على مستوى كل متغير

ومن خلال الشاشة السابقة يتم تحديد المدخلات والمخرجات الخاصة بالنموذج. كما انه يمكن إدخال البيانات من خلال برنامج أخر مثل الـ Excel وفتح الملف من خلال برنامج المناشة التالية.



ويقوم البرنامج باستيراد البيانات التي تم تجهيزها من خلال الشاشة السابقة ومن خلال هذه الشاشة يتم تعريف الحقول:

الحقول Fields

ينبغي تحديد نوع كل حقل من البيانات داخل النموذج، وتشيهل البيانات على أربع أنواع هي:

I = Input Field

T = Target Field

R = Reference Field

* = Unused Field

ويتم تعريف خصائص كل حقل من خلال شاشة خصائص الحقول التالية

Field Configuration : Single Fig	ield <u>×</u>
Field Number	Field Name VAR00001
- Data Conversion-	
Original Float	Current Float
	Conversions
Field Usage	Missing Value Replacement
	COff
C Reference	
C Target	C Mode
C Network Target	C Fixed Value
C Network Output	No. 1 Value 1
☐ Not Used	Default Values
Range Checking	
● Off Outlier Sto	
C Min/Max C Outlier Ma	Max Dev. to Range
C Limit Min.	Max.
Previous	Next Close

شكل (3-3) شاشة الخصائص

المخرجات Output:

ويسمح البرنامج بثلاث أشكال من المخرجات هي:

- جدول بيانات Data Output
- مخرجات نصية Text Output
- رسوم بیانیة Graphics Output

وعند عرض المخرجات يقوم البرنامج بتقسيمها إلى المجموعات التالية:

I = Input المدخلات الفعلية المعطاة

T = Target

M = Network Target المدخلات المتوقعة على الشبكة

O = Network Output المخرجات المتوقعة على الشبكة

نموذج التنبؤ Forecasting Modeling:

يشتمل برنامج Neural Connection على ستة أدوات تستخدم في بناء الهماذج ثلاثة منها تعمل بنظام الشبكات العصبية وهي:

Multi-Layer Perceptron Radial Basis Function Kohonen Tool

أما الثلاثة الأخرى فهي أساليب إحصائية:

Closest Class Mean Classifier Regression Tool

Principal Component Analysis

وسوف يركز البحث على نموذج شائع الاستخدام في المجالات التطبيقية وهو بيرسبترون متعدد الطبقات Multi-Layer Perceptron حيث أكدت البحوث التطبيقية أن هذا النموذج يعتبر من أقوى النماذج في التنبؤ.

4.1.3 نموذج بيرسبترون متعدد الطبقات متعدد الطبقات

يعتبر نموذج بيرسبترون من أبرز النماذج التي استخدمت في التطبيقات العملية والذي حقق نتائج ملحوظة في العديد من التطبيقات، ولقد أكدت هذه التطبيقات إن هذا النموذج يعطى نتائج جيدة ويستطيع التعرف على الأنماط والتنبؤ بقيم البيانات خاصة في حالة البيانات ذات العلاقة غير الخطية، كما يسمح بتعدد الطبقات ال مختفية Hidden Layers الإضافية المكونة من الخلايا العصبية والتي تقع بين طبقة المدخلات والمخرجات، كما يتميز هذا النموذج بقدرته على التعلم بشكل كبير.

وهذا النموذج بالتالي يعتمد على تعديل قيم الخلايا الموجودة (الترجيحات) بالطبقة المختفية، حيث يبدأ بقيم عشوائية صغيرة وعن طريق تنشيط هذه الخلايا بدالة تنشيطية مثل:

Sign Function	$Y_{sign} = \left\{ \begin{cases} +1 \ yx > = 0 \\ -1 \ yx < 0 \end{cases} \right\}$	دالة الإشارة
Step Function	$Y_{step} = \begin{cases} 1 & yx >= 1 \\ 0 & yx < 0 \end{cases}$	دالة الخطوة
Linear Function	$Y_{lin} = x$	الدالة التخطيطية
Sigmoid Function	$Y_{sign} = \frac{1}{1 + e^{-x}}$	دالة سيجمويد

يستمر في عمليات التحسين والنقل إلى الطبقة التالية بشكل متكرر حتى يعطى إشارة أن ناتج الخلايا العصبية المحسوبة يقترب من المخرجات المطلوبة \hat{Y} الموجود في طبقة المخرجات، وأن الاختلاف بين القيمتين يتمثل في مقدار الخطأ المسموح به والذي يتم تحديده عند بناء النموذج.

تحسين نتائج نموذج بيرسبترون متعدد الطبقات:

يعتمد قرار تحسين نتائج النموذج على عدة عناصر هي:

Number of Hidden Layers - عدد الطبقات الم خ فية

2 - عدد الخلايا في كل طبقة م خنفية 2

Type of activation function عنوع الدالة التنشيطية المستخدمة في الخلايا 3 – نوع الدالة التنشيطية المستخدمة في الخلايا

4 - خوارزمية التعلم Learning Algorithm

Initial Waits 5 – القيم الابتدائية للأوزان بين الخلايا

1.4.1.3 عدد الطبقات الم ختفية:

يسمح نموذج بيرسبترون متعدد الطبقات بتحديد عدد الطبقات الم خفية فى حدود طبقة واحدة أو طبقتين أو نترك البرنامج يقوم بتحديدها بشكل تلقائي ويتوقف كل ذلك على قدرة النموذج فى التعرف على البيانات.

2.4.1.3 عدد الخلايا في كل طبقة م خشية:

يتم تحديد عدد الخلايا في كل طبقة مختفية، وفي حالة إضافة عدد كافي من الخلايا يمكن الحصول على أفضل النتائج، وعستخدم ذلك في تصحيح النتائج وتقليل الخطأ.

3.4.1.3 الدالة التنشيطية المستخدمة في الخلايا:

يمكن تحديد الدالة التنشيطية المستخدمة في الخلايا على مستوى كل طبقة فيمكن استخدام دالة واحدة أو أكثر من دالة وتوجد عدة أنواع من الدوال يسمح بها برنامج . Tanh , Sigmoid , Linear, step, sign .

4.4.1.3 خوارزمية التعلم:

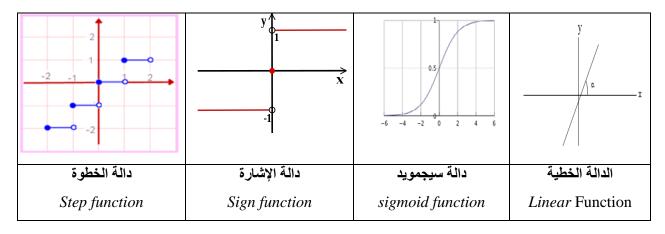
يستخدم نموذج بيرسبترون متعدد الطبقات نوعين من خو ارزمية التعلم لتغيير الترجيحات بين الخلايا هما:

النوع الأول: خوارزمية Conjugate Gradient والتي تقيس الخطأ على سطح كل خلية بعد الانتهاء من كل عملية حساب.

النوع الثاني: خوارزمية Steepest Descent فهي تقيس الخطأ على سطح كل خلية مع كل عملية التعلم.

5.4.1.3 القيم الابتدائية للترجيحات بين الخلايا

عند البدء في هذه الخطوة فإفنا لابد وأن نختار نوع خوارزمية التعلم أولاً، ثم نقوم بتغيير القيم الابتدائية للترجيحات على خلايا المدخلات. مع ملاحظة أن نموذج بيرسبترون متعدد الطبقات يبدأ بالترجيحات بطريقة عشوائية بشكل تلقائى مع كل خلية مدخلات.



2.3 البناء الهيكلى للنموذج المقترح:

1.2.3 تهيئة البيانات:

تعتبر قاعدة البيانات الموجودة بنظام معلومات الأحمال الكهربائية ودرجات الحرارة هي المصدر الرئيسي للبيانات اللازمة لتشغيل نموذج الشبكة العصبية من أجل التنبؤ بنمط الأحمال الكهربائية على مستوى المحطة الكهربائية.

تم استخدام برنامج Excel لإدخال البيانات الخاصة بالأحمال الكهربائية ودرجات الحرارة، ولتطبيق هذا النموذج فقد تم الاعتماد عينة من البيانات الافتراضية (نظرا لعد م توفر البيانات الحقيقية، وشملت العينة على نوعين من البيانات:

1 - بيانات على مستوى اليوم

حيث تم اخذ بيانات اكبر واصغر قيمة لدرجات الحرارة واكبر واصغر كمية للأحمال الكهربائية خلال اليوم لعدد من الأشهر متفرقة (يناير، فبراير، يونيه، يوليه، أكتوبر، نوفمبر).

Day	اليوم
Month	الشهر
Temp_max	درجة الحرارة القصوى
Temp_min	درجة الحرارة الصغرى
Power_max	كمية الأحمال القصوى
Power_min	كمية الأحمال الصغرى

والجدول التالى يوضح مجموعة المدخلات الأفتراضية الخاصة بالنموذج:

Day	month	Power max	Power min	Temperature max	Temperature min
1	6	1278	713	35	17.5
2	6	1229	715	35	17.5
3	6	1186	662	34	18
4	6	1252	694	36	18
5	6	1195	663	38.5	19
6	6	1125	666	39.8	20
7	6	1083	611	40	20
8	6	1148	597	41	20.5
9	6	1194	727	42	21
10	6	1116	735	40.8	20.4
11	6	1163	704	41.9	21
12	6	1159	674	43.8	21.8
13	6	1194	706	44.1	22
14	6	1237	696	45.2	22.5
15	6	1180	717	44.3	22.5
16	6	1250	692	43	21.5
17	6	1227	694	42	21
18	6	1240	727	40	20
19	6	1218	742	38	18
20	6	1250	679	37.8	18.5
21	6	1230	706	36.8	14.8
22	6	1307	691	35	17.5
23	6	1227	855	33	16.5
24	6	1272	808	34	17.8
25	6	1299	719	33.2	16.5
26	6	1214	775	39.1	18.5
27	6	1239	748	40	20
28	6	1327	787	41	20.5
29	6	1265	855	42	21
30	6	1272	824	38	18
1	7	1265	641	37	18.5
2	7	1322	705	35.8	17.8
3	7	1279	744	34	18
4	7	1303	717	36	18
5	7	1323	732	38.5	19
6	7	1307	761	39.8	20
7	7	1286	825	41.8	20.5
8	7	1210	809	41.5	20.3
9	7	1276	796	40.1	20
10	7	1247	744	40.8	20.4
11	7	1216	768	41.9	21
12	7	1236	768	43.8	21.8
13	7	1180	769	44.1	22
14	7	1132	722	44.8	22.4
15	7	1107	670	45.2	22.5
16	7	1246	760	44.2	22.1

Day	month	Power max	Power min	Temperature max	Temperature min
17	7	1244	732	44	22
18	7	1189	675	43.2	21.5
19	7	1169	644	43.1	21
20	7	1189	763	44.2	22.1
21	7	1198	712	45.6	22.5
22	7	1134	724	46.2	23
23	7	1169	756	45.3	22.5
24	7	1174	675	43.2	21.5
25	7	1210	641	42.8	21.4
26	7	1240	763	42.7	21.3
27	7	1224	782	42	21
28	7	1230	708	41	20.5
29	7	1148	655	40	20
30	7	1241	607	41.2	20.5
31	7	1102	660	42	21
1	1	1336	742	18.5	2.5
2	1	1366	834	20.8	5
3	1	1349	854	20.8	2.5
4	1	1337	763	21.8	3.2
5	1	1247	718	22.5	4
6	1	1316	669	21.5	7.3
7	1	1289	851	19.8	5.4
8	1	1387	831	19.8	6.5
9	1	1323	637	18.9	4.2
10	1	1370	735	14.8	3
11	1	1298	752	16.8	9
12	1	1273	712	19.4	6
13	1	1127	666	20.8	3.1
14	1	1174	720	21.3	2.5
15	1	1193	636	20.4	4.6
16	1	1131	655	22.3	4.5
17	1	1112	634	22.5	3
18	1	1135	645	20.3	2
19	1	1117	695	20.8	3
20	1	1205	621	22.6	3
21	1	1153	647	23.5	4
22	1	1220	652	24.5	6
23	1	1190	649	26.8	5
24	1	1210	722	27.8	3.4
25	1	1247	669	25.5	4.5
26	1	1226	681	22.8	6
27	1	1155	671	21.5	4
28	1	1217	653	21.6	5
29	1	1223	730	20.5	3
30	1	1279	666	21.8	2.5
31	1	1290	732	22.8	6

Day	month	Power max	Power min	Temperature max	Temperature min
1	2	1276	756	15	3.5
2	2	1299	702	17	4
3	2	1271	720	17.5	4.5
4	2	1168	699	16	6
5	2	1293	694	14.8	5.5
6	2	1219	677	13.5	3
7	2	1280	705	13.8	2.5
8	2	1269	748	13.8	4.5
9	2	1279	738	20.1	5.5
10	2	1235	689	21.3	6.5
11	2	1193	750	22.3	7
12	2	1218	839	21.3	7.5
13	2	1226	775	22.3	6.5
14	2	1234	830	23.2	8.5
15	2	1189	796	24.3	9.5
16	2	1239	718	25.6	11.1
17	2	1232	737	26.7	10
18	2	1154	672	27.3	13
19	2	1287	730	27.8	13.2
20	2	1288	731	28.8	14.2
21	2	1229	787	27.5	13.2
22	2	1216	702	26.4	12.2
23	2	1177	770	26	12
24	2	1142	744	25.3	12.5
25	2	1226	613	25	13
26	2	1211	728	25.2	11.5
27	2	1234	718	24.2	10
28	2	1254	754	24.8	10.5
1	10	1189	653	30	14
2	10	1268	638	29.5	13.2
3	10	1212	586	29.5	13.2
4	10	1253	628	30	14
5	10	1203	659	29.8	13
6	10	1144	669	29.3	13.1
7	10	1133	642	30	14
8	10	1159	601	29	12
9	10	1239	675	28	13
10	10	1188	679	29	14
11	10	1113	591	29.5	15
12	10	1045	582	30	14
13	10	1073	569	29.5	15
14	10	1080	572	29	11
15	10	1092	571	28	10
16	10	1012	604	27.5	11.5
17	10	1054	600	28.5	11.8
18	10	1038	640	28	12

Day	month	Power max	Power min	Temperature max	Temperature min
19	10	1013	617	26	10
20	10	1069	519	25	11
21	10	1095	533	24	12
22	10	1099	575	25	10.8
23	10	1122	569	25.9	10.5
24	10	1073	568	26	11
25	10	1075	566	26.8	12.8
26	10	1081	559	27.4	12.1
27	10	1189	619	28	12.1
28	10	1223	633	28.5	12.8
29	10	1175	665	29	14
30	10	1225	638	28	13
31	10	1121	733	27	12
1	11	1225	638	29	15
2	11	1176	642	28.8	14
3	11	1224	650	28.8	14
4	11	1199	689	28.7	14
5	11	1185	738	27.7	13.5
6	11	1244	727	27.3	13.5
7	11	1205	769	26.2	13
8	11	1204	697	25	12.5
9	11	1252	639	24.8	12.4
10	11	1186	704	25.1	12.5
11	11	1140	654	26.1	13
12	11	1281	691	27.1	13.5
13	11	1256	711	27.9	13.5
14	11	1232	744	28.3	14.2
15	11	1294	732	28.5	14.5
16	11	1280	645	28.9	14.8
17	11	1264	638	27.5	12.5
18	11	1228	729	26.5	13.2
19	11	1259	714	24	11.5
20	11	1278	776	25	12
21	11	1283	755	23.8	11.5
22	11	1253	712	22.8	11
23	11	1296	741	24	12
24	11	1302	771	25.5	12.5
25	11	1276	754	26.6	13.2
26	11	1270	745	27.8	13.4
27	11	1250	760	26.2	13.1
28	11	1277	787	25.3	12.5
29	11	1299	782	24.2	12.1
30	11	1290	770	23.1	11.5

2 - بيانات على مستوى الساعة:

تم اخذ بيانات درجات الحرارة وكمية الأحمال الكهربائية خلال أربعة وعشرون ساعة لعدد من الأيام لهذه الأشهر (شهر يوليه من فصل الصيف، وشهر نوفمبر من فصل الخريف، وشهر فبراير من فصل الشتاء، وشهر مايو من فصل الربيع).

Season	الفصل
Day	اليوم
Month	الشهر
Hours	الساعة
Temperatures	درجة الحرارة
RealPower	كمية الأحمال

والجدول التالى يوضح مجموعة المدخلات الخاصة بالنموذج:

Season	Mon	Day	Hours	RealPower	Temperatures
Summer	7	3	1	958	20
Summer	7	3	2	924	21
Summer	7	3	3	744	21.5
Summer	7	3	4	764	22.5
Summer	7	3	5	764	23.5
Summer	7	3	6	754	24.5
Summer	7	3	7	850	24.8
Summer	7	3	8	1040	25.8
Summer	7	3	9	1125	27.5
Summer	7	3	10	1222	28.6
Summer	7	3	11	1106	29
Summer	7	3	12	1102	30
Summer	7	3	13	1026	32.5
Summer	7	3	14	982	33.8
Summer	7	3	15	878	34
Summer	7	3	16	987	33.5
Summer	7	3	17	1080	32.1
Summer	7	3	18	1138	31
Summer	7	3	19	1179	29
Summer	7	3	20	1243	28

Season	Mon	Day	Hours	RealPower	Temperatures
Summer	7	3	21	1279	27
Summer	7	3	22	1172	26
Summer	7	3	23	1057	25
Summer	7	3	24	952	23
Summer	7	4	1	847	21
Summer	7	4	2	822	21.5
Summer	7	4	3	752	21.9
Summer	7	4	4	722	22.5
Summer	7	4	5	732	23.1
Summer	7	4	6	727	24.8
Summer	7	4	7	825	25.1
Summer	7	4	8	1146	25.9
Summer	7	4	9	1193	27.1
Summer	7	4	10	1213	28.9
Summer	7	4	11	1137	30.2
Summer	7	4	12	1097	32.1
Summer	7	4	13	966	33.5
Summer	7	4	14	920	34.6
Summer	7	4	15	852	35.1
Summer	7	4	16	1017	36.1
Summer	7	4	17	987	34.1
Summer	7	4	18	1133	32.1
Summer	7	4	19	1129	30.1
Summer	7	4	20	1196	29
Summer	7	4	21	1303	28.1
Summer	7	4	22	1193	27.5
Summer	7	4	23	1098	26.1
Summer	7	4	24	1011	24
Summer	7	5	1	828	21.5
Summer	7	5	2	771	22
Summer	7	5	3	764	22.5
Summer	7	5	4	732	23.5
Summer	7	5	5	746	24.1
Summer	7	5	6	771	26.3
Summer	7	5	7	918	27.1
Summer	7	5	8	1061	28.1
Summer	7	5	9	1151	29.3
Summer	7	5	10	1200	30.1
Summer	7	5	11	1216	33.1
Summer	7	5	12	1118	34.6
Summer	7	5	13	1087	35.8
Summer	7	5	14	983	36.1
Summer	7	5	15	932	37.8
Summer	7	5	16	1051	38
Summer	7	5	17	1048	38.5

Season	Mon	Day	Hours	RealPower	Temperatures
Summer	7	5	18	1177	37.1
Summer	7	5	19	1190	35.1
Summer	7	5	20	1323	33.8
Summer	7	5	21	1317	33
Summer	7	5	22	1148	30.5
Summer	7	5	23	1091	29
Summer	7	5	24	1018	28
Summer	7	6	1	885	23.1
Summer	7	6	2	861	24.8
Summer	7	6	3	824	25.1
Summer	7	6	4	796	25.6
Summer	7	6	5	761	25.8
Summer	7	6	6	861	27.8
Summer	7	6	7	976	28
Summer	7	6	8	1140	29.8
Summer	7	6	9	1227	31.1
Summer	7	6	10	1220	33
Summer	7	6	11	1150	34.6
Summer	7	6	12	1042	36
Summer	7	6	13	1079	37.8
Summer	7	6	14	953	38.5
Summer	7	6	15	972	39.8
Summer	7	6	16	967	39.5
Summer	7	6	17	1062	37.6
Summer	7	6	18	1226	36.5
Summer	7	6	19	1267	35.2
Summer	7	6	20	1307	34.2
Summer	7	6	21	1280	31.9
Summer	7	6	22	1266	30.1
Summer	7	6	23	1098	29.2
Summer	7	6	24	943	28.5
Summer	7	10	1	812	23.8
Summer	7	10	2	831	24.5
Summer	7	10	3	776	25.8
Summer	7	10	4	794	26.6
Summer	7	10	5	794	27.8
Summer	7	10	6	783	28.5
Summer	7	10	7	862	30.2
Summer	7	10	8	1089	31.3
Summer	7	10	9	1161	33.2
Summer	7	10	10	1289	34.6
Summer	7	10	11	1173	35.8
Summer	7	10	12	1150	36.9
Summer	7	10	13	952	38
Summer	7	10	14	911	39.5

Season	Mon	Day	Hours	RealPower	Temperatures
Summer	7	10	15	985	40.8
Summer	7	10	16	995	40.1
Summer	7	10	17	1048	39
Summer	7	10	18	1120	38.1
Summer	7	10	19	1175	36.2
Summer	7	10	20	1181	35.2
Summer	7	10	21	1247	32.1
Summer	7	10	22	1224	30.8
Summer	7	10	23	1083	29.8
Summer	7	10	24	1007	29.5
Summer	7	11	1	887	24.2
Summer	7	11	2	845	24.6
Summer	7	11	3	847	25.1
Summer	7	11	4	834	25.8
Summer	7	11	5	810	27.9
Summer	7	11	6	768	28.8
Summer	7	11	7	843	31.5
Summer	7	11	8	1092	32.6
Summer	7	11	9	1191	33
Summer	7	11	10	1206	35.1
Summer	7	11	11	1177	35.9
Summer	7	11	12	1108	36.6
Summer	7	11	13	1043	38.1
Summer	7	11	14	946	39.2
Summer	7	11	15	893	40.8
Summer	7	11	16	938	41.9
Summer	7	11	17	928	41
Summer	7	11	18	1127	40
Summer	7	11	19	1145	38
Summer	7	11	20	1205	37.2
Summer	7	11	21	1216	36.1
Summer	7	11	22	1192	35.2
Summer	7	11	23	1059	32
Summer	7	11	24	965	31
Summer	7	12	1	867	25.1
Summer	7	12	2	842	25.3
Summer	7	12	3	817	26.2
Summer	7	12	4	807	26.9
Summer	7	12	5	768	27
Summer	7	12	6	838	29.5
Summer	7	12	7	954	30.1
Summer	7	12	8	1087	33.2
Summer	7	12	9	1192	35.3
Summer	7	12	10	1210	37.1
Summer	7	12	11	1177	38.9

Season	Mon	Day	Hours	RealPower	Temperatures
Summer	7	12	12	1119	40.1
Summer	7	12	13	1025	42.1
Summer	7	12	14	935	43.2
Summer	7	12	15	899	43.8
Summer	7	12	16	909	43.5
Summer	7	12	17	1021	41.5
Summer	7	12	18	1083	40.1
Summer	7	12	19	1093	39.5
Summer	7	12	20	1065	39
Summer	7	12	21	1236	38
Summer	7	12	22	1145	37.1
Summer	7	12	23	1050	36.2
Summer	7	12	24	870	33.3
Summer	7	13	1	879	28
Summer	7	13	2	855	28
Summer	7	13	3	779	28.5
Summer	7	13	4	790	29
Summer	7	13	5	769	29.8
Summer	7	13	6	802	30.3
Summer	7	13	7	887	33.2
Summer	7	13	8	1024	34.5
Summer	7	13	9	1180	36.8
Summer	7	13	10	1194	38
Summer	7	13	11	1139	39
Summer	7	13	12	1075	40.8
Summer	7	13	13	1003	42.2
Summer	7	13	14	954	43.2
Summer	7	13	15	915	44.1
Summer	7	13	16	832	43.2
Summer	7	13	17	1020	42.3
Summer	7	13	18	977	40.1
Summer	7	13	19	1120	38.1
Summer	7	13	20	1146	36.3
Summer	7	13	21	1180	35.6
	7	13	22	1120	34.1
Summer		13			
Summer	7		23	1114	32.1
Summer	7	13	24	924	31
Autum	11	7	1	684	9
Autum	11	7	2	698	9
Autum	11	7	3	702	8.7
Autum	11	7	4	718	8.8
Autum	11	7	5	617	9.3
Autum	11	7	6	637	10.5
Autum	11	7	7	804	11.5
Autum	11	7	8	989	12.6

Season	Mon	Day	Hours	RealPower	Temperatures
Autum	11	7	9	1071	14.2
Autum	11	7	10	1067	16.8
Autum	11	7	11	1009	18.5
Autum	11	7	12	1061	19.5
Autum	11	7	13	907	20.8
Autum	11	7	14	888	21.1
Autum	11	7	15	897	22
Autum	11	7	16	921	22
Autum	11	7	17	1003	21
Autum	11	7	18	1081	20
Autum	11	7	19	1170	19
Autum	11	7	20	1051	18.5
Autum	11	7	21	961	16
Autum	11	7	22	934	13
Autum	11	7	23	884	11
Autum	11	7	24	759	10
Autum	11	8	1	620	8.5
Autum	11	8	2	680	8
Autum	11	8	3	684	7.5
Autum	11	8	4	672	8
Autum	11	8	5	652	9
Autum	11	8	6	708	9.5
Autum	11	8	7	830	10
Autum	11	8	8	1011	13
Autum	11	8	9	1055	14
Autum	11	8	10	1076	15
Autum	11	8	11	1062	16.5
Autum	11	8	12	981	17.5
Autum	11	8	13	1001	18.5
Autum	11	8	14	934	20
Autum	11	8	15	837	22
Autum	11	8	16	916	24
Autum	11	8	17	993	24
Autum	11	8	18	1130	23
Autum	11	8	19	1175	22
Autum	11	8	20	1130	19
Autum	11	8	21	999	17.5
Autum	11	8	22	1068	14.5
Autum	11	8	23	933	13
Autum	11	8	24	805	12
Autum	11	9	1	724	10
Autum	11	9	2	703	11
Autum	11	9	3	671	11.5
Autum	11	9	4	675	11.6
Autum	11	9	5	719	12

Season	Mon	Day	Hours	RealPower	Temperatures
Autum	11	9	6	683	12.3
Autum	11	9	7	907	12.1
Autum	11	9	8	1038	13.5
Autum	11	9	9	988	14.2
Autum	11	9	10	1049	14.6
Autum	11	9	11	951	15.8
Autum	11	9	12	1031	16.9
Autum	11	9	13	962	18.5
Autum	11	9	14	996	19.9
Autum	11	9	15	898	20
Autum	11	9	16	1002	22
Autum	11	9	17	1017	23
Autum	11	9	18	1132	18.5
Autum	11	9	19	1116	16.5
Autum	11	9	20	1103	15.8
Autum	11	9	21	944	14.5
Autum	11	9	22	947	12.5
Autum	11	9	23	823	11
Autum	11	9	24	756	10.5
Autum	11	10	1	680	11
Autum	11	10	2	633	11.5
Autum	11	10	3	593	12.6
Autum	11	10	4	605	13.1
Autum	11	10	5	633	13.8
Autum	11	10	6	671	14.6
Autum	11	10	7	841	15.9
Autum	11	10	8	965	16.8
Autum	11	10	9	1014	18.7
Autum	11	10	10	1069	20
Autum	11	10	11	1069	21.8
Autum	11	10	12	1038	22.5
Autum	11	10	13	984	23.2
Autum	11	10	14	954	24.6
Autum	11	10	15	880	25.7
Autum	11	10	16	966	25.3
Autum	11	10	17	987	24.1
Autum	11	10	18	1073	22.1
Autum	11	10	19	1205	18.8
Autum	11	10	20	1138	16.6
Autum	11	10	21	1058	14.5
Autum	11	10	22	969	13.5
Autum	11	10	23	864	12.1
Autum	11	10	24	737	11.1
Autum	11	14	1	766	11.2
Autum	11	14	2	722	11.6

Season	Mon	Day	Hours	RealPower	Temperatures
Autum	11	14	3	690	12.1
Autum	11	14	4	670	12.9
Autum	11	14	5	654	13.3
Autum	11	14	6	691	14.9
Autum	11	14	7	890	16
Autum	11	14	8	917	16.5
Autum	11	14	9	1062	16.9
Autum	11	14	10	1129	18
Autum	11	14	11	1121	18.8
Autum	11	14	12	1056	19.9
Autum	11	14	13	1042	20.9
Autum	11	14	14	963	21
Autum	11	14	15	973	23.8
Autum	11	14	16	977	24
Autum	11	14	17	1055	23.6
Autum	11	14	18	1149	21.4
Autum	11	14	19	1250	20.4
Autum	11	14	20	1113	19.5
Autum	11	14	21	997	17.8
Autum	11	14	22	951	15
Autum	11	14	23	861	13.5
Autum	11	14	24	741	12.5
Autum	11	15	1	645	12
Autum	11	15	2	641	12.5
Autum	11	15	3	629	13
Autum	11	15	4	637	13.9
Autum	11	15	5	629	14.1
Autum	11	15	6	654	14.9
Autum	11	15	7	816	15.9
Autum	11	15	8	895	16.8
Autum	11	15	9	1010	18.5
Autum	11	15	10	1000	19.8
Autum	11	15	11	981	20.5
Autum	11	15	12	935	22.1
Autum	11	15	13	952	23.1
Autum	11	15	14	882	24.4
Autum	11	15	15	792	26.1
Autum	11	15	16	976	26
Autum	11	15	17	964	25.1
Autum	11	15	18	1091	23.1
Autum	11	15	19	1165	21.3
Autum	11	15	20	1105	19.6
Autum	11	15	21	953	17.4
Autum	11	15	22	897	15.6
Autum	11	15	23	744	14.1

Season	Mon	Day	Hours	RealPower	Temperatures
Autum	11	15	24	670	13.1
Autum	11	16	1	592	13
Autum	11	16	2	580	13.2
Autum	11	16	3	570	13.5
Autum	11	16	4	570	13.9
Autum	11	16	5	570	14.1
Autum	11	16	6	587	14.8
Autum	11	16	7	727	15.9
Autum	11	16	8	868	16.8
Autum	11	16	9	957	17.7
Autum	11	16	10	1020	19.5
Autum	11	16	11	692	20
Autum	11	16	12	974	20.8
Autum	11	16	13	1011	22
Autum	11	16	14	920	23.5
Autum	11	16	15	889	24.1
Autum	11	16	16	951	24
Autum	11	16	17	1043	23
Autum	11	16	18	1106	22.1
Autum	11	16	19	1119	19.8
Autum	11	16	20	964	18.1
Autum	11	16	21	885	17
Autum	11	16	22	620	16
Autum	11	16	23	722	15
Autum	11	16	24	648	13
Autum	11	17	1	597	12.1
Autum	11	17	2	579	11.8
Autum	11	17	3	514	12.1
Autum	11	17	4	523	12.8
Autum	11	17	5	520	13
Autum	11	17	6	583	15.1
Autum	11	17	7	722	16.1
Autum	11	17	8	869	18
Autum	11	17	9	925	18.8
Autum	11	17	10	964	20
Autum	11	17	11	913	21
Autum	11	17	12	921	23
Autum	11	17	13	928	24.5
Autum	11	17	14	911	26.5
Autum	11	17	15	827	27
Autum	11	17	16	932	28.5
Autum	11	17	17	980	26.5
Autum	11	17	18	1026	23
Autum	11	17	19	1122	22
Autum	11	17	20	1009	20.1

Season	Mon	Day	Hours	RealPower	Temperatures
Autum	11	17	21	928	19.8
Autum	11	17	22	879	17.5
Autum	11	17	23	725	14.5
Autum	11	17	24	699	13.3
Winter	2	6	1	812	3
Winter	2	6	2	738	2.5
Winter	2	6	3	699	3.6
Winter	2	6	4	977	4
Winter	2	6	5	719	5.5
Winter	2	6	6	689	7
Winter	2	6	7	900	8.5
Winter	2	6	8	1119	9.5
Winter	2	6	9	1144	10.5
Winter	2	6	10	1117	10.2
Winter	2	6	11	1158	10.5
Winter	2	6	12	1066	11.3
Winter	2	6	13	1120	12
Winter	2	6	14	1047	13.2
Winter	2	6	15	1027	13.5
Winter	2	6	16	968	12.1
Winter	2	6	17	1012	11.2
Winter	2	6	18	1050	10.5
Winter	2	6	19	1211	9.5
Winter	2	6	20	1219	8.8
Winter	2	6	21	1108	8.3
Winter	2	6	22	1058	7.3
Winter	2	6	23	987	7
Winter	2	6	24	879	6.5
Winter	2	7	1	789	2.5
Winter	2	7	2	719	3
Winter	2	7	3	705	4
Winter	2	7	4	725	4.5
Winter	2	7	5	729	4.8
Winter	2	7	6	750	5
Winter	2	7	7	916	6.5
Winter	2	7	8	1093	7
Winter	2	7	9	1127	7.9
Winter	2	7	10	1049	8.5
Winter	2	7	11	1125	10.6
Winter	2	7	12	1083	11.3
Winter	2	7	13	1117	12.1
Winter	2	7	14	1073	13.3
Winter	2	7	15	1076	13.8
Winter	2	7	16	1071	13
Winter	2	7	17	1105	12.1

Season	Mon	Day	Hours	RealPower	Temperatures
Winter	2	7	18	1063	11
Winter	2	7	19	1280	10
Winter	2	7	20	1333	9.5
Winter	2	7	21	1232	7.8
Winter	2	7	22	1236	7
Winter	2	7	23	1137	6.5
Winter	2	7	24	1043	5.5
Winter	2	8	1	828	4.6
Winter	2	8	2	768	5.5
Winter	2	8	3	648	6.5
Winter	2	8	4	748	7
Winter	2	8	5	708	8.5
Winter	2	8	6	750	9.5
Winter	2	8	7	955	10.5
Winter	2	8	8	1155	11.6
Winter	2	8	9	1189	2.9
Winter	2	8	10	1199	13.6
Winter	2	8	11	1222	14.9
Winter	2	8	12	1199	15.8
Winter	2	8	13	1173	16.6
Winter	2	8	14	1138	17.8
Winter	2	8	15	1160	18.3
Winter	2	8	16	1130	17.8
Winter	2	8	17	1174	16.3
Winter	2	8	18	1184	15.3
Winter	2	8	19	1269	13.8
Winter	2	8	20	1251	12.9
Winter	2	8	21	1250	10.9
Winter	2	8	22	1255	10
Winter	2	8	23	1164	9.5
Winter	2	8	24	1017	8.5
Winter	2	9	1	907	5.5
Winter	2	9	2	833	6.5
Winter	2	9	3	761	7.5
Winter	2	9	4	743	7.9
Winter	2	9	5	738	8.5
Winter	2	9	6	754	10.3
Winter	2	9	7	928	11.3
Winter	2	9	8	1159	12.3
Winter	2	9	9	1168	14
Winter	2	9	10	1242	15.3
Winter	2	9	11	1263	16.8
Winter	2	9	12	1136	18
Winter	2	9	13	1126	19.3
Winter	2	9	14	1060	20.1

Season	Mon	Day	Hours	RealPower	Temperatures
Winter	2	9	15		21
Winter Winter	2	9	16	1082 1064	18
Winter	2	9	17	1004	19
Winter	2	9	18	1121	18.1
Winter	2	9	19	1274	16.5
Winter	2	9	20	1274	15.2
Winter	2	9	21	1247	13.2
	2	9			
Winter Winter	2	9	22 23	1163 1132	12.5 11.1
Winter	2	9	24	952	10.1
Winter		13	1	1063	6.5
Winter	2	13	2	963	7.5
Winter	2	13	3	875	7.9
Winter	2	13	4	799	8
Winter	2	13	5	791	8.8
Winter	2	13	6	771	9.5
Winter	2	13	7	864	10.3
Winter	2	13	8	965	11.6
Winter	2	13	9	1053	13.2
Winter	2	13	10	1145	14.8
Winter	2	13	11	1193	16.2
Winter	2	13	12	1109	17.9
Winter	2	13	13	1162	20.1
Winter	2	13	14	1176	21.9
Winter	2	13	15	1122	22.3
Winter	2	13	16	1076	22
Winter	2	13	17	1119	21.5
Winter	2	13	18	1204	21
Winter	2	13	19	1209	20.1
Winter	2	13	20	1226	19
Winter	2	13	21	1167	18.5
Winter	2	13	22	1129	17.1
Winter	2	13	23	1067	14.1
Winter	2	13	24	1008	13.1
Winter	2	14	1	1035	8.5
Winter	2	14	2	889	9.8
Winter	2	14	3	910	10.5
Winter	2	14	4	918	11
Winter	2	14	5	873	11.2
Winter	2	14	6	860	11.5
Winter	2	14	7	854	12.8
Winter	2	14	8	952	13.2
Winter	2	14	9	956	14.1
Winter	2	14	10	1134	15.2
Winter	2	14	11	1132	16.3

Season	Mon	Day	Hours	PealPower	Temperatures
Season	IVIOII			ixean ower	Temperatures
Winter	2	14	12	1078	17.8
Winter	2	14	13	1112	20.2
Winter	2	14	14	1032	21.2
Winter	2	14	15	1043	22.1
Winter	2	14	16	1084	23.2
Winter	2	14	17	1101	21.9
Winter	2	14	18	1174	20.1
Winter	2	14	19	1234	19.2
Winter	2	14	20	1207	18
Winter	2	14	21	1141	16.5
Winter	2	14	22	1091	13.8
Winter	2	14	23	995	12.1
Winter	2	14	24	977	11.2
Winter	2	15	1	940	9.5
Winter	2	15	2	924	9.8
Winter	2	15	3	816	9.9
Winter	2	15	4	796	10.2
Winter	2	15	5	831	11.8
Winter	2	15	6	801	12.2
Winter	2	15	7	893	13.2
Winter	2	15	8	969	14.8
Winter	2	15	9	1155	15.3
Winter	2	15	10	1202	17.8
Winter	2	15	11	1187	18
Winter	2	15	12	1122	19.2
Winter	2	15	13	1186	21
Winter	2	15	14	1106	22.8
Winter	2	15	15	1119	23.9
Winter	2	15	16	1105	24
Winter	2	15	17	1088	23.9
Winter	2	15	18	1160	22
Winter	2	15	19	1180	21.5
Winter	2	15	20	1180	19.5
Winter	2	15	21	1189	17.5
Winter	2	15	22	1115	16.3
Winter	2	15	23	1008	14.2
Winter	2	15	24	1042	13.2
Winter	2	16	1	1004	11.1
Winter	2	16	2	939	11.3
Winter	2	16	3	900	11.4
Winter	2	16	4	788	12
Winter	2	16	5	828	12.8
Winter	2	16	6	718	13.9
Winter	2	16	7	816	14.5
Winter	2	16	8	862	15
vviiitei	۷	10	<u> </u>	002	15

Season	Mon	Day	Hours	RealPower	Temperatures
Winter Winter	2	16 16	9 10	971	15.8 16.8
	2			1134	16.8
Winter	2	16	11 12	1139	
Winter		16		1182	18.8
Winter	2	16	13 14	1148	22
Winter	2	16		1124	23
Winter		16	15	1138	24.2
Winter	2	16	16	1118	25.6
Winter	2	16	17	1131	25
Winter	2	16	18	1135	24
Winter	2	16	19	1239	23.2
Winter	2	16	20	1217	20
Winter	2	16	21	1130	19.8
Winter	2	16	22	1120	17
Winter	2	16	23	1023	15.2
Winter	2	16	24	972	13.5
Spring	5	1	1	582	11.5
Spring	5	1	2	511	12.5
Spring	5	1	3	484	12.6
Spring	5	1	4	483	13.8
Spring	5	1	5	492	13.5
Spring	5	1	6	519	12
Spring	5	1	7	603	13.5
Spring	5	1	8	724	15.1
Spring	5	1	9	765	15.8
Spring	5	1	10	776	16.5
Spring	5	1	11	760	17.9
Spring	5	1	12	776	18.5
Spring	5	1	13	766	20.7
Spring	5	1	14	709	23
Spring	5	1	15	677	22.7
Spring	5	1	16	674	21
Spring	5	1	17	739	19.5
Spring	5	1	18	762	19.5
Spring	5	1	19	800	17.5
Spring	5	1	20	862	16.5
Spring	5	1	21	818	14
Spring	5	1	22	800	13.5
Spring	5	1	23	697	12.5
Spring	5	1	24	598	13
Spring	5	2	1	578	12.5
Spring	5	2	2	528	12
Spring	5	2	3	495	12.8
Spring	5	2	4	481	14
Spring	5	2	5	505	14

Season	Mon	Day	Hours	RealPower	Temperatures
Spring	5	2	6	551	14
Spring	5	2	7	621	14
Spring	5	2	8	641	16.5
Spring	5	2	9	767	16.5
Spring	5	2	10	816	17.5
Spring	5	2	11	818	18.1
Spring	5	2	12	800	19.5
Spring	5	2	13	800	23.8
Spring	5	2	14	796	25.4
Spring	5	2	15	763	24.9
Spring	5	2	16	751	21.1
Spring	5	2	17	803	20.5
Spring	5	2	18	794	19
Spring	5	2	19	874	18.5
Spring	5	2	20	936	17.5
Spring	5	2	21	906	16
Spring	5	2	22	841	15.5
Spring	5	2	23	735	13.1
Spring	5	2	24	668	13
Spring	5	3	1	593	14.6
Spring	5	3	2	561	14
Spring	5	3	3	541	13.6
Spring	5	3	4	521	14.9
Spring	5	3	5	501	13.7
Spring	5	3	6	559	13.7
Spring	5	3	7	715	14
Spring	5	3	8	804	16
Spring	5	3	9	848	16.5
Spring	5	3	10	846	17
Spring	5	3	11	868	19.9
Spring	5	3	12	824	20.5
Spring	5	3	13	794	22
Spring	5	3	14	741	23
Spring	5	3	15	750	24
Spring	5	3	16	754	22.8
Spring	5	3	17	808	20.8
Spring	5	3	18	879	19
Spring	5	3	19	919	18.2
Spring	5	3	20	996	17.5
Spring	5	3	21	962	16
Spring	5	3	22	821	14.5
Spring	5	3	23	761	13.5
Spring	5	3	24	711	12.2
Spring	5	4	1	648	12.5
Spring	5	4	2	561	11.5

Season	Mon	Day	Hours	RealPower	Temperatures
Spring	5	4	3	534	12.5
Spring	5	4	4	529	14.9
Spring	5	4	5	569	14.4
Spring	5	4	6	603	12.9
Spring	5	4	7	737	14
Spring	5	4	8	804	15.5
Spring	5	4	9	828	15.5
Spring	5	4	10	888	15.8
Spring	5	4	11	890	16
Spring	5	4	12	888	17
Spring	5	4	13	863	21.5
Spring	5	4	14	788	22.5
Spring	5	4	15	764	21
Spring	5	4	16	774	21.3
Spring	5	4	17	840	22
Spring	5	4	18	896	18.2
Spring	5	4	19	884	19
Spring	5	4	20	1008	18.5
Spring	5	4	21	949	15.1
Spring	5	4	22	858	16
Spring	5	4	23	773	14.8
Spring	5	4	24	672	14.1
Spring	5	8	1	708	11.5
Spring	5	8	2	578	12
Spring	5	8	3	564	13.8
Spring	5	8	4	592	13
Spring	5	8	5	588	12
Spring	5	8	6	561	14
Spring	5	8	7	718	14.5
Spring	5	8	8	880	15.5
Spring	5	8	9	943	16.5
Spring	5	8	10	971	17.5
Spring	5	8	11	954	18.1
Spring	5	8	12	886	18.8
Spring	5	8	13	844	21.8
Spring	5	8	14	760	25
Spring	5	8	15	749	21.8
Spring	5	8	16	788	22.1
Spring	5	8	17	889	21.5
Spring	5	8	18	957	18.5
Spring	5	8	19	953	18.5
Spring	5	8	20	1075	17.5
Spring	5	8	21	1015	16.5
Spring	5	8	22	976	15
Spring	5	8	23	484	14.1

Season	Mon	Day	Hours	RealPower	Temperatures
Spring	5	8	24	740	13
Spring	5	9	1	635	12.6
Spring	5	9	2	567	13
Spring	5	9	3	563	12
Spring	5	9	4	565	13
Spring	5	9	5	565	13.5
Spring	5	9	6	569	13
Spring	5	9	7	760	13
Spring	5	9	8	895	16.1
Spring	5	9	9	965	17.5
Spring	5	9	10	968	18.9
Spring	5	9	11	950	19.1
Spring	5	9	12	823	20.5
Spring	5	9	13	864	22
Spring	5	9	14	810	23.5
Spring	5	9	15	787	22.5
Spring	5	9	16	815	19.5
Spring	5	9	17	898	18.5
Spring	5	9	18	964	16.2
Spring	5	9	19	970	20.5
Spring	5	9	20	1057	16
Spring	5	9	21	949	14.9
Spring	5	9	22	874	14.5
Spring	5	9	23	785	13.8
Spring	5	9	24	721	14.2
Spring	5	10	1	650	12.5
Spring	5	10	2	608	13.8
Spring	5	10	3	558	13.5
Spring	5	10	4	588	14
Spring	5	10	5	596	14.6
Spring	5	10	6	620	12.8
Spring	5	10	7	732	14
Spring	5	10	8	859	16.1
Spring	5	10	9	933	16.5
Spring	5	10	10	987	20.8
Spring	5	10	11	939	23
Spring	5	10	12	945	24.8
Spring	5	10	13	923	26.1
Spring	5	10	14	789	25.8
Spring	5	10	15	784	24.7
Spring	5	10	16	833	22.5
Spring	5	10	17	916	23.7
Spring	5	10	18	938	18.5
Spring	5	10	19	988	21
Spring	5	10	20	1069	17.2

Season	Mon	Day	Hours	RealPower	Temperatures
Spring	5	10	21	999	16.9
Spring	5	10	22	907	17.3
Spring	5	10	23	820	14.3
Spring	5	10	24	735	14
Spring	5	11	1	669	11
Spring	5	11	2	635	12.8
Spring	5	11	3	595	13.7
Spring	5	11	4	584	14
Spring	5	11	5	587	15
Spring	5	11	6	627	17.5
Spring	5	11	7	821	18
Spring	5	11	8	817	20.5
Spring	5	11	9	994	22.8
Spring	5	11	10	1030	24
Spring	5	11	11	1022	24.8
Spring	5	11	12	960	25
Spring	5	11	13	934	26.1
Spring	5	11	14	834	27
Spring	5	11	15	842	25
Spring	5	11	16	884	23
Spring	5	11	17	901	22
Spring	5	11	18	984	19.5
Spring	5	11	19	974	21.5
Spring	5	11	20	1063	17.5
Spring	5	11	21	1047	15.2
Spring	5	11	22	997	14.1
Spring	5	11	23	832	13.2
Spring	5	11	24	777	12.7

2.2.3 النموذج الأول: التنبؤ بالأحمال الكهربائية على مستوى اليوم:

ولتطبيق هذا النموذج تم تقسيم بيانات السلسلة الزمنية إلى ثلاثة مجموعات لاستخدامها في النموذج وهي كما يلي:

المجموعة الأولى:

مجموعة البيانات الخاصة بمرحلة التعلم وهي مرحلة مهمة لتحديد فعالية نموذج الشبكة العصبية المقترح ولابد وأن تشمل 80 % تقريبا من مجموع بيانات النموذج وذلك حتى يتمكن النموذج من التعلم والتعرف على البيانات.

المجموعة الثانية:

مجموعة التحقق وهي لمراقبة ما إذا كانت مخرجات النموذج تعطى النتائج المتوقعة أم لا, وذلك من خلال المقارنة بين المخرجات الفعلية التي تم تغذيتها للشبكة والمخرجات المحسوبة على الشبكة, ففي حالة الحصول على نتائج قريبة من القيم الفعلية، وبأقل خطأ ممكن ومقبول، في هذه الحالة يمكن القول بأن النموذج أصبح مقبولاً، ونقوم بإنهاء عملية التعلم, أما في حالة وجود اختلاف بين القيم الفعلية والمحسوبة وهذا الاختلاف غير مقبول فإن عملية التعلم تستمر مع التغيير في مجموعة معلمات التعلم، وعلى ذلك فمجموعة التحقق مهمة للنموذج وتحتاج النماذج إلى 10% تقريبا من مجموع البيانات لكي تقوم بعملية التحقق.

المجموعة الثالثة:

مجموعة الاختبار فبعد الانتهاء من تعلم النموذج لابد من اختباره والتأكد من أن النموذج يعمل بشكل جيد, وذلك من خلال مجموعة جديدة من البيانات يتم تغذيتها للنموذج ومقارنتها بما هو فعلى، ويحتاج النموذج إلى 10% الباقية من مجموع البيانات لكي يقوم بعملية التحقق، مع ملاحظة أن هذه المجموعة الفعلية لم تستخدم في عملية التدريب والتعلم. وعلى ذلك فقد قامت المجموعة البحثية بتقسيم مجموعة البيانات بناء على ما سبق إلى ثلاثة مجموعات على النحو التالي:-

مجموعة التعلم 80% مجموعة التحقق 10% مجموعة الاختبار 10%

والشكل التالي يوضح تقسيم مجموعات البيانات.

Data Allocation	×
File Order	Data Sets (desired) // #
Sequential	Training 80. 145
C Random Seed 5	Validation 10. 18
Data Blocking	Test 10. 18
None	Not used 0. 0
Number of blocks	Total 100. 181
Records per block	Assignment
▼ Mark remaining records as not used	Sequential
Training Records	○ Random Seed 5
Min. 10 Max. 10000	☐ Test records at end
Include test records in range calculation	
Recalculate Range Information	OK Cancel

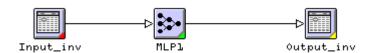
شكل (4-3) شاشة مجموعة المعلمات

المجموعة الرابعة: البناء الهيكلي للنموذج الأول للشبكة العصبية:

تم إنشاء هيكل للتنبؤ بنمط الأحمال الكهربائية على مستوى (يوم) لدراسة وتحليل القدرة التنبؤية لكل عنصر من عناصر درجات الحرارة كمتغير مستقل مع الأحمال الكهربائية كمتغير تابع، ولبناء هذا الهيكل هناك أربعة مراحل:

المرحلة الأولى: تركيب نموذج الشبكة العصبية:

يوضح الشكل التالي تركيب الشبكة العصبية للنموذج المستخدم في حالة التنبؤ بالأحمال الكهربائية (يوم).



شكل (3-3) تركيب نموذج الشبكة العصبية المقترح

حيث

Input_inv مجموعة المدخلات والمخرجات الفعلية المعطاه

MLP1 نموذج التعلم المقترح

Output_inv نتائج الشبكة

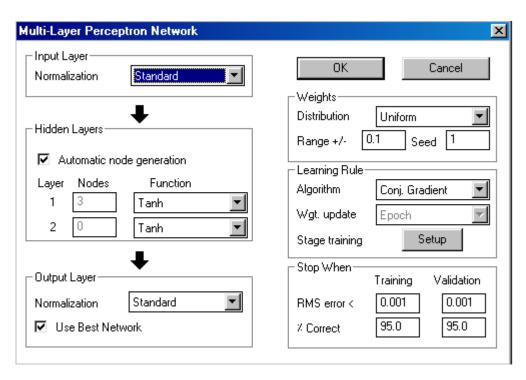
والجدول التالي يوضح المعلمات التي تم الاعتماد عليها في بناء نموذج التعلم المقترح في حالة التنبؤ بالأحمال الكهربائية (يوم)، والتي من المفترض أن تحقق أفضل أداء للنموذج.

معلمات التحقق	معلمات الطبقة الهخفية	المعلمات العامة
معدل الخطأ 0.1%	معدل التعلم 25%	عناصر معالجة طبقة المدخلات (4)
معدل التصحيح 95%	معدل التقارب 60%	عناصر معالجة الطبقة المخفية (3)
		عناصر معالجة طبقة المخرجات (2)
		قاعدة التعلم: التغذية العكسية
		الدالة التنشيطية: الدالة الآسية

حيث تشير العديد من الدراسات على إن الدالة الآسية (دالة سيجمويد) Sigmoid هي من أكثر الدوال التي تلائم عملية التنبؤ بالأحمال الكهربائية.

المرحلة الثانية: تدريب وتعلم النموذج الأول قبل التعديل في المعلمات:

تم الاختيار العشوائي لمجموعة الترجيحات النسبية المبدئية لعناصر المعالجة لنموذج الشبكة العصبية, وهذه الترجيحات تربط بين مجموعة عناصر المعالجة في طبقة المدخلات (4 عناصر معالجة) ومجموعة عناصر المعالجة في الطبقة المختفية (3 عناصر معالجة) وعنصرين في طبقة المخرجات، وتستخدم هذه الترجيحات النسبية عند تشغيل الدالة التنشيطية للتقريب بين المخرجات الفعلية والمتوقعة. والشكل التالي يوضح مجموعة الترجيحات النسبية قبل التعديل في المعلمات.



شكل (3-6) شاشة معلمات النموذج قبل التعديل

ونلاحظ في الشكل السابق أن:

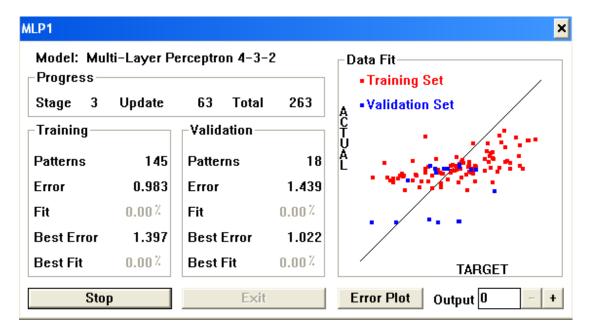
- 1 طبقة المدخلات: تتبع التطبيع القياسي لمجموعة المدخلات
 - 2 _ الطبقة الهختفية: يتم التعديل في
- أ ـــ الأسلوب الذي يتم من خلاله تحديد عدد الطبقات هو الأسلوب التلقائي
 - ب عدد الخلايا المختفية ثلاثة
 - ج _ الدالة المستخدمة هي Tanh
 - 3 طبقة المخرجات: تتبع التطبيع القياسي مع أفضل شبكة مستخدمة
- 0.1 ± 0.1 : حيث يتم توزيع الترجيحات بشكل مطرد وتأخذ المدى ± 0.1 كما يتم توزيع الترجيحات على الخلايا بمستوى واحد.
 - 5 قاعدة التعلم: وتشتمل على
 - أ خوارزمية التعلم Conjugate Gradient
 - ب _ تحدیث الترجیحات یتم بشکل تلقائی
 - ج _ مراحل التدريب: ويمكن التحكم في مراحل التدريب من خلال التعديل في Setup وفي هذه الحالة تظهر الشاشة التالية

MLP Training Stage	S			×
				OK
	1	2	3	4
Learning Coeff.	0.9	0.7	0.5	0.4
Momentum Coeff.	0.1	0.4	0.5	0.6
Max. Records	100	145	145	145
Max. Updates	100	100	100	100

شكل (3-7) شاشة التعديل في مراحل التدريب

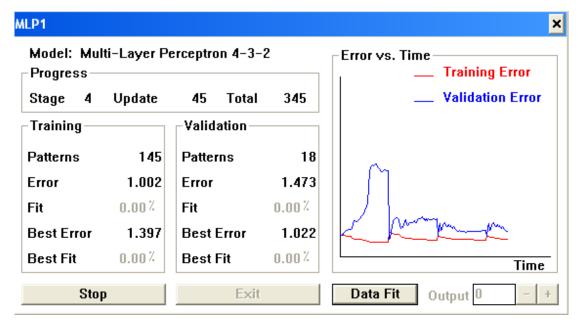
ومن الشاشة السابقة يمكن التعديل في مراحل التدريب وإن كان البرنامج يقوم بعملية التعديل بشكل تلقائى أثناء عملية التعلم.

والشكل التالي يوضح شاشة التدريب قبل التعديل في المعلمات.



شكل (3-8) شاشة التدريب قبل التعديل في المعلمات

ونلاحظ في الشكل السابق أن حجم الخطأ وصل إلى 0.983 وهذه تعتبر نسبة غير مقبولة, أما في مجموعة التحقق فإن حجم الخطأ وصل إلى 1.439 وهذه النسبة أيضا غير مقبولة، وعلى ذلك سيتم تعديل المعلمات إلى أن نصل إلى أفضل خطأ ممكن على الشبكة للتنبؤ بالأحمال الكهربائية، أما منحى الخطأ في مرحلة التعلم قبل التعديل فيظهر كما في الشكل التالي:



شكل (3-9) شاشة منحنى خطأ التعلم قبل التعديل

ومن الشاشة السابقة تتضح مدى تعلم الشبكة حيث:

- الخطأ في مجموعة التدريب قد وصل إلى 1.002.
- الخطأ في مجموعة التحقق وصل إلى 1.473 أي إنه لم يتعلم حيث انه اكبر من الواحد الصحيح .

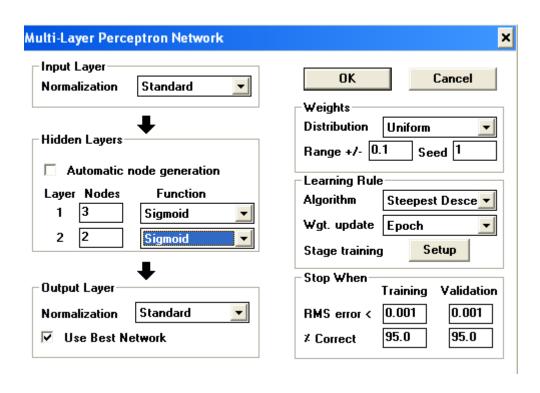
وعلى ذلك فإن هذه النسبة غير مقبولة وسوف يتم تعديل المعلمات وتدريب وتعلم الشبكة مرة أخرى.

المرحلة الثالثة: تدريب وتعلم النموذج الأول بعد التعديل في المعلمات:

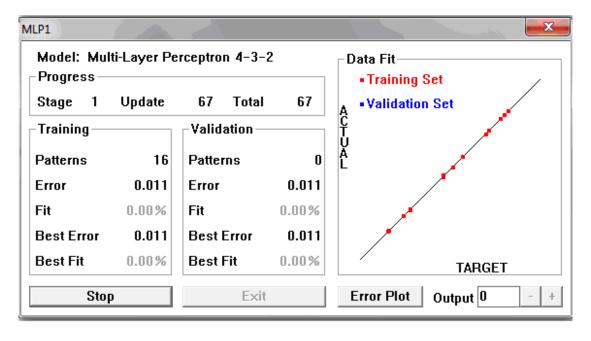
حيث يتم توقف تدريب وتعليم النموذج إذا كان:

- أ الجذر التربيعي لمتوسط مربع الانحراف Root Mean Square Error في الانحراف بالتحقق فيصل هذا RMS يصل في مجموعة التدريب إلى 0.001 ، وفي مجموعة التحقق فيصل هذا الجذر إلى 0.001أيضا .
- ب _ دقة نتائج التحقق: تصل في مجموعة التدريب إلى 0.95 وفي مجموعة التحقق تصل إلى 0.95 أيضاً.

وعلى ذلك يتم تعديل شاشة الإعدادات على النحو التالى:



شكل (3-10) شاشة معلمات النموذج بعد التعديل وبعد الانتهاء من التعديلات يتم تدريب الشبكة العصبية مرة أخرى، فتظهر شاشة التدريب التالية

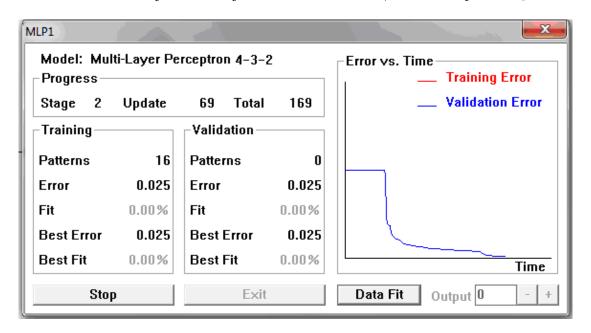


شكل (3-11) شاشة التدريب بعد التعديل في المعلمات

ومن الشاشة السابقة تتضح مدى تعلم الشبكة حيث:

- الخطأ في مجموعة التدريب قد وصل إلى 0.011 وهي أقل كمية خطأ تم الوصول اليها.
 - الخطأ في مجموعة التحقق وصل إلى 0.011 وهذا يدل على إنه تعلم بشكل جيد.

أما منحى الخطأ في مرحلة التعلم بعد التعديل فيظهر كما في الشكل التالي



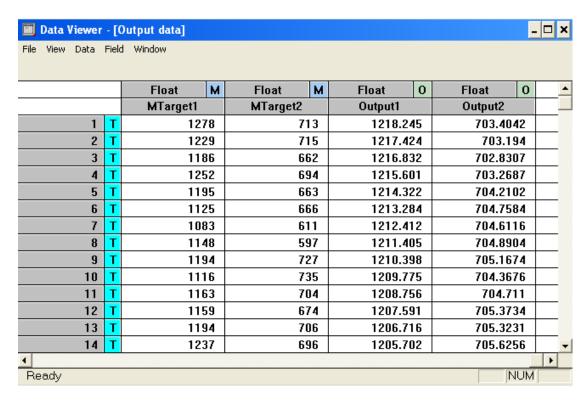
شكل (3-12) شاشة منحنى خطأ التعلم قبل التعديل

ومن الشاشنة السابقة يتضح مدى تعلم الشبكة حيث:

- الخطأ في مجموعة التدريب قد وصل إلى 0.025.
 - الخطأ في مجموعة التحقق وصل إلى 0.025.

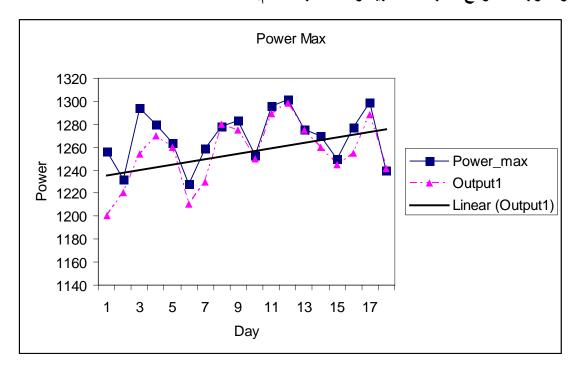
وتعتبر هذه النسب التي توصل إليها النموذج أثناء عملية التدريب والتعلم أعلى نسب حققها النموذج وهي نسب مقبولة بناء على الشروط السابقة.

والشكل التالي يوضح مخرجات نموذج الشبكة العصبية بعد التعديل في معلمات النموذج وتدريب وتعلم النموذج المقترح.



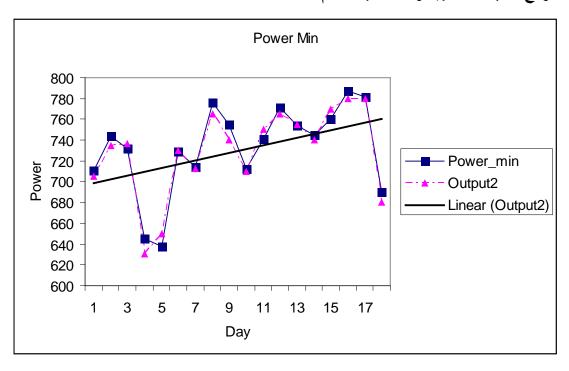
شكل (3-13) شاشة نتائج التشغيل

والشكل البياني التالي يوضح نمط الأحمال الكهربائية القصوى لسلسة البيانات الأصلية ومخرجات نموذج الشبكة العصبية وخط الاتجاه العام.



شكل (3-14) شكل التنبؤ بنمط الأحمال الكهربائية القيمة القصوى

أما الشكل التالي فيوضح نمط الأحمال الكهربائية الصغرى لسلسة البيانات الأصلية ومخرجات نموذج الشبكة العصبية وخط الاتجاه العام.



نقوم بعد ذلك باختبار نتائج النموذج الأول واختبار دقة التنبؤ، بمقارنة القيم الفعلية والقيم المتنبأ بها وذلك من خلال اختبار T-Test.

المرحلة الرابعة: اختبار دقة نتائج النموذج الأول:

بعد الانتهاء من تدريب وتعلم الشبكة يتم اختبار دقة النتائج أ _ في حالة الأحمال الكهربائية القصوى

في هذه المرحلة يتم استخدام الاختبار الإحصائي T-Test للتأكد من (هل يوجد اختلاف بين القيم الفعلية والنتائج المعطاة من نموذج الشبكة العصبية أم لا).

وفيما يلى نتائج اختبار T-Test.

الجدول الأول: الوصف الإحصائي

Υ	N	Mean	Std. Deviation	Std. Error Mean
1	182	1261.44	27.96	9.195
2	182	1251.11	31.75	8.629

يتضمن الجدول السابق بيانات المتغيرين (القيم الفعلية Y1 والنتائج المعطاة Y2) والإحصاءات الوصفية الخاصة بهما مثل: عدد المشاهدات والمتوسط والانحراف المعياري ومتوسط الخطأ المعياري.

الجدول الثاني و هو يتضمن جزئين:

الجزء الأول: اختبار Levene's Test للتجانس:

حيث إن الفرض العدمى: متوسط القيم الفعلية للأحمال الكهربائية القصوى يساوى متوسط قيم النتائج المعطاة من الشبكة.

أما الفرض البديل: متوسط القيم الفعلية للأحمال الكهربائية القصوى لا يساوى متوسط قيم النتائج المعطاة من الشبكة.

		Levene's Test for I	Equality of Variances
		F	Sig.
Υ	Equal variances assumed	.000	.999
	Equal variances not assumed		

وحيث إن قيمة المعنوية Sig تساوى 9.999 وهى اكبر من 0.05 ففي هذه الحالة يتم قبول الفرض العدمى القائل بان متوسط القيم الفعلية للأحمال الكهربائية القصوى يساوى متوسط قيم النتائج المعطاة من الشبكة، وعلى ذلك فهناك تجانس بين المتغيرين.

الجزء الثاني: نتائج اختبار عينتين مستقلتين T-Test for Equality of Means

	t-test for Equality of Means					
					95% Confidence	Interval of the
					Differe	nce
		Sig. (2-		Std. Error		
t	df	tailed)	Mean Difference	Difference	Lower	Upper
.000	181	0.100	-331.000	8678093.713	-17723362.763	17722700.763
.000	181	0.100	-331.000	8678093.713	-17723362.764	17722700.764

يلاحظ من نتائج هذا الاختبار إن قيمة المعنوية Sig تساوى 0.10 وهى اكبر من مستوى المعنوية 0.05 ، وبالتالي فإننا نقبل الفرض العدمى القائل بان التباين بين القيم الفعلية للأحمال الكهربائية القصوى تساوى تباين قيم النتائج المعطاة من الشبكة، وعلى ذلك فأن الفروق بين المتغيرين غير معنوية.

ب _ في حالة الأحمال الكهربائية الصغرى:

في هذه المرحلة يتم استخدام الاختبار الإحصائي T-Test للتأكد من (هل يوجد اختلاف بين القيم الفعلية والنتائج المعطاة من نموذج الشبكة العصبية أم لا).

وفيما يلي نتائج اختبار T-Test.

الجدول الأول: الوصف الإحصائي

Υ	N	Mean	Std. Deviation	Std. Error Mean
1	182	727.17	44.53	5.08
2	182	725.61	45.46	7.31

يتضمن الجدول السابق بيانات المتغيرين (القيم الفعلية Y1 والنتائج المعطاة Y2) والإحصاءات الوصفية الخاصة بهما مثل: عدد المشاهدات والمتوسط والانحراف المعياري ومتوسط الخطأ المعياري.

الجدول الثاني و هو يتضمن جزئين:

الجزء الأول: اختبار Levene's Test للتجانس

حيث إن الفرض العدمى: متوسط القيم الفعلية للأحمال الكهربائية الصغرى يساوى متوسط قيم النتائج المعطاة من الشبكة.

أما الفرض البديل: متوسط القيم الفعلية للأحمال الكهربائية الصغرى لا يساوى متوسط قيم النتائج المعطاة من الشبكة.

	Levene's Test for Equality of Variances		
Y	F	Sig.	
Equal variances assumed	.000	.657	
Equal variances not			
assumed			

وحيث إن قيمة المعنوية Sig تساوى 5.657 وهى اكبر من 0.05 ففي هذه الحالة يتم قبول الفرض العدمى القائل بان متوسط القيم الفعلية للأحمال الكهربائية الصغرى يساوى متوسط قيم النتائج المعطاة من الشبكة، وعلى ذلك فهناك تجانس بين المتغيرين.

الجزء الثاني: نتائج اختبار عينتين مستقلتين عستقلتين T-Test for Equality of Means

	t-test for Equality of Means					
95% C						Interval of the
		Sig. (2-	Mean	Std. Error	Differe	nce
t	df	tailed)	Difference	Difference	Lower	Upper
.000	181	0.140	40.72376	12.3216352	-3362.154	3362.154
.000	181	0.10	40.72376	12.3216352	-53362.15	53362.15

يلاحظ من نتائج هذا الاختبار إن قيمة المعنوية Sig تساوى 0.140 وهى اكبر من مستوى المعنوية 0.05 ، وبالتالي فإننا نقبل الفرض العدمى القائل بان التباين بين القيم الفعلية للأحمال الكهربائية الصغرى تساوى تباين قيم النتائج المعطاة من الشبكة، وعلى ذلك فأن الفروق بين المتغيرين غير معنوية.

بعد التأكد من مدى قدرة النموذج الأول للتنبؤ الأحمال بالكهربائية على مستوى (اليوم) سوى بالطاقة القصوى أو الطاقة الصغرى يتم اختبار النموذج الثاني وهو التنبؤ بالأحمال الكهربائية على مستوى (ساعة).

3.2.3 النموذج الثاني: التنبؤ بالأحمال الكهربائية على مستوى الساعة

وفى هذه المرحلة يتم دراسة وتحليل القدرة التنبؤية بالأحمال الكهربائية مع درجات الحرارة كمتغير مستقل والأحمال الكهربائية كمتغير تابع. والتعرف على مدى القدرة التنبؤية بالأحمال الكهربائية في حالة (ساعة).

ولتطبيق هذا النموذج تم أيضا تقسيم بيانات السلسلة الزمنية كما في النموذج الأول: وقد تم تقسيم مجموعة البيانات إلى ثلاثة مجموعات على النحو التالي:- مجموعة التعلم 80% مجموعة التحقق 10% مجموعة الاختبار 10%

والشكل التالي يوضح تقسيم مجموعات البيانات.

Data Allocation				×
File Order	- Data Sets (de	sired) ,	11	
Sequential	Training	80.	145	
© Random Seed 5	Validation	10.	18	
Data Blocking	Test	10.	18	
None	Not used	0.	0	
Number of blocks	Total	100	181	
C Records per block	Assignment	100.		
✓ Mark remaining records as not used	Sequent	tial		
Training Records	CRandom	Seed	5	
Min. 10 Max. 10000	☐ Test red	ords at end		
☐ Include test records in range calculation ☐ Recalculate Range Information		OK	Cancel	

شاشة مجموعة المعلمات

البناء الهيكلي للنموذج الثاني للشبكة العصبية على مستوى الساعة:

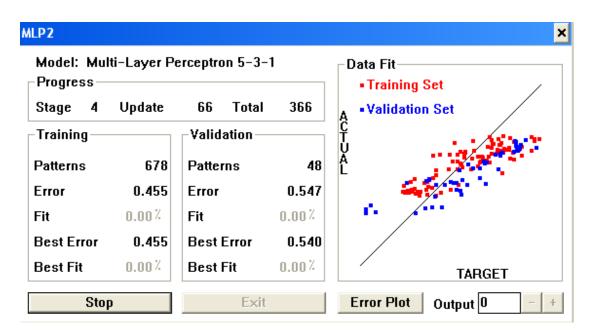
تم إنشاء هيكل للتنبؤ بنمط الأحمال الكهربائية على مستوى (ساعة) ، والجدول التالي يوضح المعلمات التي تم الاعتماد عليها في بناء نموذج التعلم المقترح في حالة التنبؤ بالأحمال الكهربائية (ساعة)، والتي من المفترض أن تحقق أفضل أداء للنموذج.

معلمات التحقق	معلمات الطبقة المخفية	المعلمات العامة
معدل الخطأ 0.1%	معدل التعلم 25%	عناصر معالجة طبقة المدخلات (5)
معدل التصحيح 95%	معدل التقارب 60%	عناصر معالجة الطبقة المخفية (3)
		عناصر معالجة طبقة المخرجات (1)
		قاعدة التعلم: التغذية العكسية
		الدالة التحويلية: الدالة الآسية

تدريب وتعلم النموذج الثاني قبل التعديل في المعلمات:

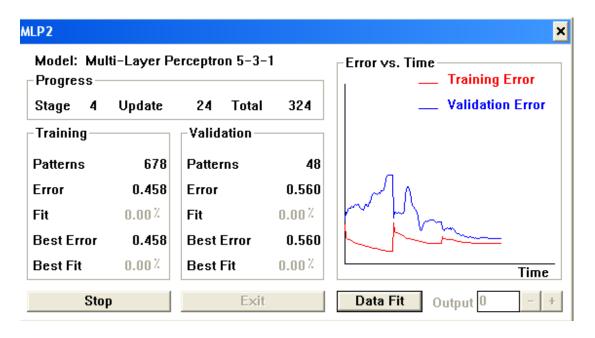
تم الاختيار العشوائي لمجموعة الترجيحات النسبية المبدئية لعناصر المعالجة لنموذج الشبكة العصبية, وهذه الترجيحات تربط بين مجموعة عناصر المعالجة في طبقة المدخلات (5 عناصر معالجة) ومجموعة عناصر المعالجة في الطبقة المخفية (3 عناصر معالجة) وعنصر في طبقة المخرجات، وتستخدم هذه الترجيحات النسبية عند تشغيل الدالة التحويلية للتقريب بين المخرجات الفعلية والمتوقعة.

والشكل التالى يوضح شاشة التدريب قبل التعديل في المعلمات.



شكل (3-16) شاشة التدريب قبل التعديل في المعلمات

ونلاحظ في الشكل السابق أن حجم الخطأ في مجموعة التدريب وصل إلى 0.455 وهذه تعتبر نسبة غير مقبولة, وفي مجموعة التحقق فإن حجم الخطأ وصل إلى 0.547 وهذه النسبة أيضا غير مقبولة، وعلى ذلك سيتم تعديل المعلمات إلى أن نصل إلى أفضل خطأ ممكن على الشبكة للتنبؤ بالأحمال الكهربائية على مستوى الساعة، أما منحى الخطاء في مرحلة التعلم قبل التعديل فيظهر كما في الشكل التالي.



شكل (3-16) شاشة منحنى خطأ التعلم قبل التعديل

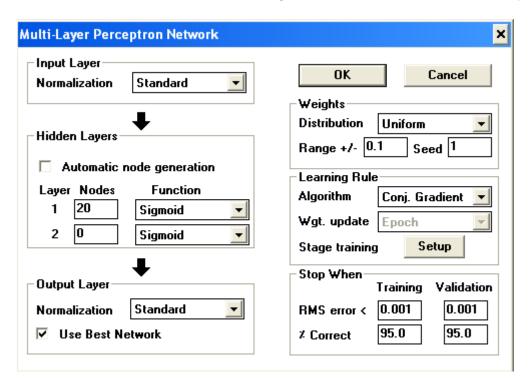
ومن الشاشة السابقة تتضح مدى تعلم الشبكة حيث:

- الخطأ في مجموعة التدريب قد وصل إلى 0.458.
 - الخطأ في مجموعة التحقق وصل إلى 0.560.

وهذه النسبة غير مقبولة وسوف يتم تعديل المعلمات وتدريب وتعلم الشبكة مرة أخرى.

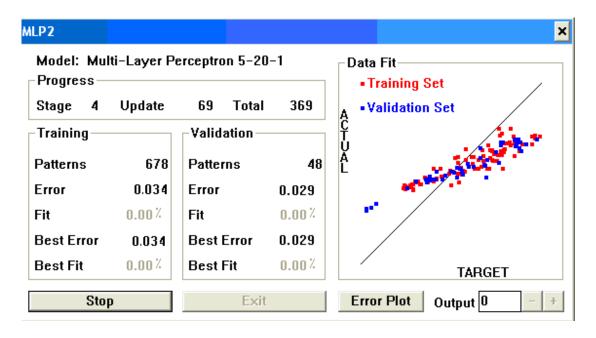
المرحلة الثالثة: تدريب وتعلم النموذج الثاني بعد التعديل في المعلمات:

وفيه يتم تعديل شاشة الإعدادات على النحو التالي:



شكل (3-17) شاشة معلمات النموذج بعد التعديل

وبعد الانتهاء من التعديلات يتم تدريب الشبكة العصبية مرة أخرى، فتظهر شاشة التدريب التالية:

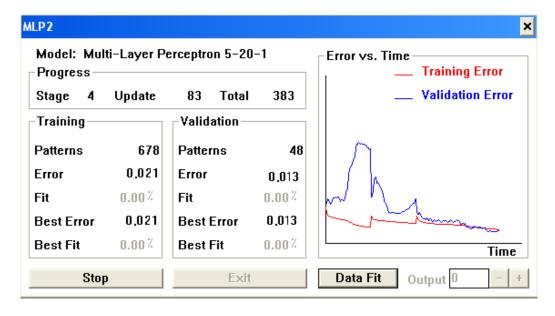


شكل (3-18) شاشة التدريب بعد التعديل في المعلمات

ومن الشاشة السابقة تتضح مدى تعلم الشبكة حيث:

- الخطأ في مجموعة التدريب قد وصل إلى 0.034 وهي أقل كمية خطأ تم الوصول إليها.
 - الخطأ في مجموعة التحقق وصل إلى 0.029 وهذا يدل على إنه تعلم بشكل جيد.

أما منحى الخطاء في مرحلة التعلم بعد التعديل فيظهر كما في الشكل التالي



شكل (19-3) شاشة منحنى خطأ التعلم قبل التعديل

ومن الشاشة السابقة يتضح مدى تعلم الشبكة حيث:

- الخطأ في مجموعة التدريب قد وصل إلى 0.021 .
 - الخطأ في مجموعة التحقق وصل إلى 0.013.

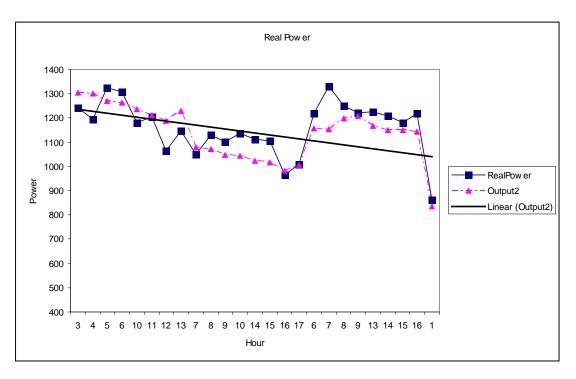
وتعتبر هذه النسب التي توصل إليها النموذج أثناء عملية التدريب والتعلم أعلى نسب حققها النموذج وهي نسب مقبولة.

والشكل التالي يوضح مخرجات نموذج الشبكة العصبية بعد التعديل في معلمات النموذج وتدريب وتعلم النموذج المقترح.

Viewer - [Output data]						
Data	Field	d Window				
		Integer I	Float	Float T	Float M	Float 0
		Hours	Temperatures	RealPower	MTarget1	Output1
9	Т	9	27.5	1125.0	1125	1090.113
10	T	11	29.0	1106.0	1106	1097.382
11	Т	12	30.0	1102.0	1102	1039.083
12	Т	13	32.5	1026.0	1026	968.3609
13	Т	14	33.8	982.0	982	944.5564
14	Т	15	34.0	878.0	878	970.3687
15	Т	16	33.5	987.0	987	1049.5
16	Т	17	32.1	1080.0	108	1175.301
17	Т	18	31.0	1138.0	1138	1273.842
18	Т	19	29.0	1179.0	1179	1322.811
19	Т	21	27.0	1279.0	1279	1256.734
20	Т	22	26.0	1172.0	1172	1197.391
21	Т	23	25.0	1057.0	1057	1136.655
22	Т	24	23.0	952.0	952	1075.993
23	Т	1	21.0	847.0	847	874.1187
24	Т	2	21.5	822.0	822	848.7906
25	Т	3	21.9	752.0	752	824.1546
26	T	4	22.5	722.0	722	804.5944

شكل (20-3) شاشة نتائج التشغيل

والشكل البياني التالي يوضح نمط الأحمال الكهربائية على مستوى الساعة لسلسة البيانات الأصلية ومخرجات نموذج الشبكة العصبية وخط الاتجاه العام.



شكل (21-3) شكل التنبؤ بنمط الأحمال الكهربائية على مستوى ساعة

نقوم بعد ذلك باختبار نتائج النموذج الثانى واختبار دقة التنبؤ، بمقارنة القيم الفعلية والقيم المتنبأ بها وذلك من خلال اختبار T-Test.

المرحلة الرابعة: اختبار دقة نتائج النموذج الثاني

أ _ في حالة الأحمال الكهربائية القصوى

في هذه المرحلة يتم استخدام الاختبار الإحصائي T-Test للتأكد من (هل يوجد اختلاف بين القيم الفعلية والنتائج المعطاة من نموذج الشبكة العصبية أم لا).

وفيما يلي نتائج اختبار T-Test.

الجدول الأول: الوصف الإحصائي

Group Statistics

Υ	N	Mean	Std. Deviation	Std. Error Mean
1	42	1030.48	206.666	31.889
2	42	1022.33	177.244	27.349

يتضمن الجدول السابق بيانات المتغيرين (القيم الفعلية Y1 والنتائج المعطاة Y2) والإحصاءات الوصفية الخاصة بهما مثل: عدد المشاهدات والمتوسط والانحراف المعياري ومتوسط الخطأ المعياري.

الجدول الثاني وهو يتضمن جزئين:

الجزء الأول: اختبار Levene's Test للتجانس

حيث إن الفرض العدمى: متوسط القيم الفعلية للأحمال الكهربائية على مستوى ساعة يساوى متوسط قيم النتائج المعطاة من الشبكة.

أما الفرض البديل: متوسط القيم الفعلية للأحمال الكهربائية على مستوى ساعة لا يساوى متوسط قيم النتائج المعطاة من الشبكة.

		Levene's Test for Equality of Variances		
		F	Sig.	
Υ	Equal variances assumed	.572	.452	
	Equal variances not assumed			

وحيث إن قيمة المعنوية Sig تساوى 0.452 وهى اكبر من 0.05 ففي هذه الحالة يتم قبول الفرض العدمى القائل بان متوسط القيم الفعلية للأحمال الكهربائية على مستوى ساعة يساوى متوسط قيم النتائج المعطاة من الشبكة ، وعلى ذلك فهناك تجانس بين المتغيرين.

T-Test for Equality of Means الجزء الثانى: نتائج اختبار عينتين مستقلتين

t-test for Equality of Means								
						95% Confidence Interval of the Difference		
		df	Cia (O toiled)	Mean	Std. Error	Lower	Unnor	
L L			Sig. (2-tailed)	Difference	Difference	Lower	Upper	
	194	82	.847	8.143	42.011	-75.430	91.716	
	194	80.139	.847	8.143	42.011	-75.459	91.745	

يلاحظ من نتائج هذا الاختبار إن قيمة المعنوية Sig تساوى 847 وهى اكبر من مستوى المعنوية 0.05 ، وبالتالي فإننا نقبل الفرض العدمى القائل بان التباين بين القيم الفعلية للأحمال الكهربائية على مستوى ساعة تساوى تباين قيم النتائج المعطاة من الشبكة، وعلى ذلك فأن الفروق بين المتغيرين غير معنوية.

الفصل الرابع مقارنة الطرق المختلفة والنتائج والتوصيات

أولاً: المقارنة بين الطرق الإحصائية التقليدية وأسلوب الشبكات العصبية الأصطناعية

- تم عمل مقارنة بين الأساليب الإحصائية التقليدية وأسلوب الشبكات العصبية وذلك للتأكد من مدى قدرة الشبكات العصبية في عملية التنبؤ بالأحمال الكهربائية.
- ففي جانب الأساليب الإحصائية التقليدية، تم اعتماد نموذج تحليل الانحدار Regression Analysis Models والذي يعتبر من المواضيع الأساسية وجزءا مهما من النظرية الإحصائية، ويتميز نموذج تحليل الانحدار باستخداماته الواسعة في مختلف العلوم الطبيعية والإدارية والاقتصادية، ويعد الانحدار أحدى أدوات التحليل في علم الإحصاء إذ يمكن استخدامه للتعبير عن العلاقات التي تربط المتغيرات فيما بينها بصيغة نماذج رياضية (نماذج تحليل الانحدار) ومن ثم تقدير معلمات هذه النماذج للتعرف على أهمية هذه المعلمات وقوتها وبيان العلاقة بينها، كما انه يبين تقدير الاستجابة والتنبؤ بها مما يفيد كثيرا في التخطيط واتخاذ القرارات لإيجاد معادلة الانحدار
 - Linear Regression Analysis وعلى ذلك يعتبر هذا النموذج الأسهل للتحليل

 $\hat{\mathbf{Y}} = \mathbf{F}(\mathbf{x})$ والصورة العامة لنموذج التنبؤ هي:

حيث :-

 $\hat{\mathbf{Y}}$ المتغير التابع (التنبؤ بالأحمال الكهربائية)

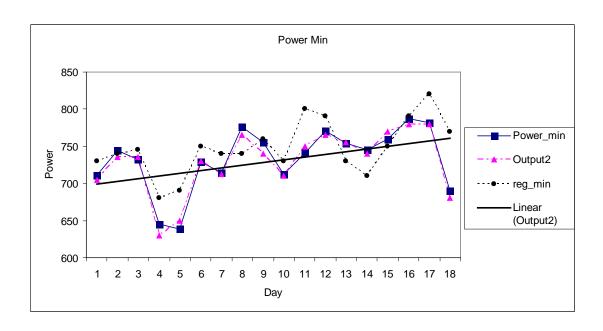
المتغير المستقل (درجات الحرارة على مستوى اليوم) $\mathbf{F}(\mathbf{x})$

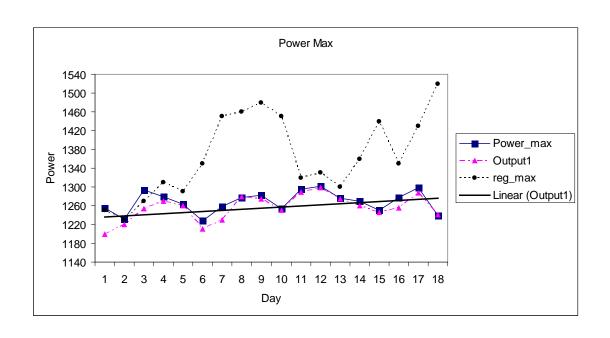
وباستخدام بيانات الأحمال الكهربائية السابقة والتي تم استخدامها في أسلوب الشبكات العصبية، وبعد إجراء العمليات الإحصائية وحصولنا على نتائج نموذج تحليل الانحدار وبالاعتماد على متوسط مربع الخطأ كأساس للمقارنة بين النموذجين، كانت نتائج متوسط مربع الخطأ بين الاسلوبين كما يلى:

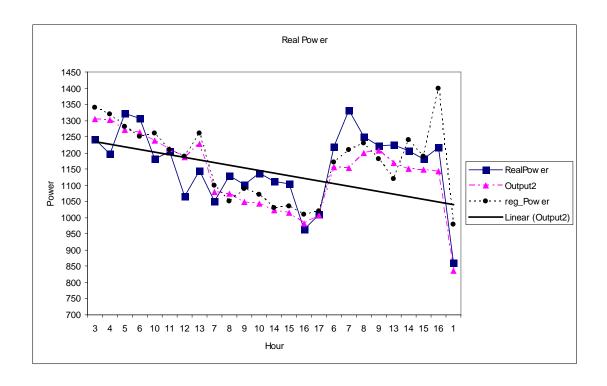
جدول رقم () المقارنة بين نتائج النموذجين

أسلوب الشبكات العصبية	نموذج تحليل	النموذج
الأصطناعية	الاتحدار	
0.025	1.369	الأول: التنبؤ بالأحمال الكهربائية على مستوى اليوم
0.021	3.757	الثاني: التنبؤ بالأحمال الكهربائية على مستوى الساعة

وكما هو واضح من الجدول أعلاه نجد أن نموذج الشبكات العصبية يتفوق على نموذج الانحدار ويبين الشكل التالي مقارنة بين قيم نموذج الشبكة العصبية (Output1 & Output2) مع قيم نموذج تحليل الانحدار للتنبؤ:







ثانيا: النتائج:

الهدف الرئيسي لهذه الدراسة هو الاستفادة من أسلوب الشبكات العصبية كأسلوب حديث لحل المشاكل العملية ومحاولة تطبيقه في مجالات الطاقة الكهربائية، ولقد أكدت البحوث والدراسات الحديثة أن أسلوب الشبكات العصبية الاصطناعية يعد من الأساليب الواعدة في مجال التنبؤ.

ومن خلال هذا البحث تم عرض نموذج مبسط للشبكات العصبية لكي يساعد متخذي القرار في مجال الطاقة الكهربائية أن يبنوا قرارتهم على أساس علمي سليم ودقيق وعلى معلومات ذات مستو عال من الدقة، ومن خلال هذا البحث تم تطبيق نموذج للتنبؤ بالاحمال الكهربائية على مرحلتين:

- ففي المرحلة الأولى (مستوى اليوم) فقد تم أخذ عينة من البيانات الخاصة بدرجات الحرارة القصوى والصغرى والأحمال الكهربائية خلال هذه الايام،
- أما في المرحلة الثانية (مستوى الساعة) فقد تم أخذ عينة من البيانات الخاصة بدرجات الحرارة خلال اربعة وعشرون ساعة والاحمال الكهربائية خلال هذه الساعات.

وقد اتضح من الدراسة أن:

- 1 -الطرق الإحصائية (مقارنة بالشبكات العصبية الاصطناعية) لم تثبت كفائتها في الحصول على التنبؤ بالأحمال الكهربائية بدقة كافية نتيجة لقصورها فيما يلى:-
 - العلاقات غير الخطية بين المدخلات والمخرجات يصعب ارتباطها.
- النماذج الإحصائية والرياضية ليست ذات مرونة كافية فى حالة الأنظمة سريعة التغيير فى الأحمال.

- 2 تتميز الشبكات العصبية الأصطناعية بأنها تسمح بتمثيل الأنظمة المعقدة التى تختلف عن نماذج الطرق التقليدية أو النظم الخبيرة. وبذلك فإن نماذج الشبكات العصبية تتغلب على هذا القصور المجود في النماذج التقليدية.
- 3 -هدف هذا البحث هو تقديم نماذج للتنبؤ بالأحمال الكهربائية ساعة بساعة ويوم
- 4 وقد استخدمنا الشبكات العصبية الأصطناعية ذات الثلاث طبقات بتغذية أمامية مع التمرين بالانتشار الخلفي.
 - 5 وقد اتضح لنا أن شبكة عصبية واحدة لا تؤدى الغرض فى جميع الحالات ولذا استخدمنا شبكة واحدة فى حالة أيام الأسبوع وثلاث شبكات عصبية فى حالة أيام نهاية الأسبوع (الأجازات).
- 6 وقد استنتجنا من البحث أن النهاية العظمى للخطأ النسبي Maximum وقد استنتجنا من البحث أن النهاية العظمى للخطأ النسبي مدار الساعة و Absolute Error باستخدام الشبكات العصبية هو 0.021 علي مدار اليوم، بينما القيمة المناظرة باستخدام برامج التنبؤ التقليدية هي 3.021 على مدار الساعة و 1.369 على مدار اليوم.
 - 7 وقد أثبتت النتائج أن التنبؤ بالأحمال الكهربائية ساعة بساعة يمكن الحصول عليها
 بمنتهى الدقة باستخدام الشبكات العصبية.
 - 8 نماذج التنبؤ بالأحمال الكهربائية هي أداة قراريه هامة جدا وحيوية لتشغيل أنظمة الطاقة الكهربائية بكفاءة وأمان واقتصاديا.
 - 9 -وأخيرا فان دقة التنبؤ بالأحمال الكهربائية تعتمد أساسا علي تمثيل وصياغة دوال الشبكات العصبية الأصطناعية. ويمكن إجراء شبكات عصبية اصطناعية مماثلة للتنبؤ بدرجات الحرارة والرطوية، بالإضافة إلى التنبؤ بمستوى مياه نهر النيل.

كما أثبتت الدراسة أن أسلوب الشبكة العصبية في التنبؤ بالأحمال الكهربائية قد حقق ما يلي:

- 1. الدقة المتناهية والواقعية في إيجاد قيم التنبؤ المستقبلية والخاصة بالأحمال الكهربائية ، وهو ما يحتاج إليه متخذ القرار في مجال الطاقة الكهربائية وهذا يؤكد أن استخدام أسلوب الشبكات العصبية يزيد من كفاءة وفعالية التنبؤ الدقيق.
- 2. سرعة الوصول إلى النتائج المطلوبة حيث تم الربط بين قاعدة بيانات الاحمال الكهربائية وأسلوب الشبكة العصبية، وهذا يجعل عملية التنبؤ تتم بشكل مستمر مع إمكانية الحصول على نتائج دقيقة في الوقت المناسب، وهذا ما يؤكد أهمية وجود قاعدة بيانات يمكن استخدامها لزيادة كفاءة وعمل نموذج الشبكات العصبية.
 - 3. مخرجات النموذج المقترح في المرحلة الأولى والثانية تؤكد مدى قدرة أسلوب الشبكة العصبية ودقتها الفائقة في التعرف على البيانات والتنبؤ بها.
- 4. يسمح نموذج الشبكة العصبية المقترح بإدخال عناصر عديدة من المتغيرات، وليس هناك عدداً محدداً من المتغيرات، كما لا يشترط النموذج نوعاً معيناً من العلاقة سواء أكانت خطية أو غير خطية.
- 5. نمط الاحمال الكهربائية والتنبؤ بها على مستوى اليوم أو الساعة يمكن أن يتم بسهولة، بعد أن يتم تدريب وتعلم الشبكة العصبية.
- 6. تناهى الخطأ القياسي (الجذر التربيعى لمتوسط مربعات الانحرافات RMS Error) فى النتائج المتحصل عليها، وهذا يدل على أن الشبكة العصبية بعد أن يتم تدريبها بشكل جيد (من خلال إعادة محاولات التدريب والتعلم مع التغيير في المعلمات، وإعادة المحاولات حتى يتم تدريب الشبكة العصبية) تصبح مدربة وقادرة على التنبؤ وهذا ما يؤكده البحث على أن التعلم والتدريب الجيد للشبكة العصبية على محاكاة الواقع يتطلب عدد كبير من مرات التعلم والتدريب.

ثالثا: التوصيات:

- 1. التوصية بأستخدام نموذج الشبكة العصبية في التطبيقات العملية والبحوث الأخرى التي تحتاج إلى درجة دقة فائقة في التنبؤ، حيث يعد استخدام نموذج التنبؤ بنمط الأحمال الكهربائية باستخدام أسلوب الشبكات العصبية الأصطناعية من التطبيقات الجديدة المستحدثة في مصر.
- 2. محاولة تجربة نموذج الشبكة العصبية باستخدام خوارزمية جديدة بدلاً من الاعتماد على طريقة التدريب الإشرافية وطريقة التعلم ذات التغذية الأمامية التتابعية والتي اعتمدت عليها الدراسة، ومن ثم عمل مقارنة بين الطريقة المستخدمة والخوارزميات الأخرى.
 - 3. عمل الندوات والمؤتمرات لإبراز هذا الأسلوب الجديد في التنبؤ والذي يساعد الباحثين في مختلف مستوياتهم العلمية والمشتغلين بمختلف المجالات، وأيضاً المديرين على مختلف مستوياتهم حتى يتسنى لمتخذي القرار اتخاذ القرار المناسب المبنى على التنبؤات الدقيقة.

المراجع

- 1. A.J. Al-Shareef, E.A. Mohamed, and E.Al-Judaibi, "One-Hour Ahead Load forecasting Using Artificial Neural Network for the western Area of Saudi Arabia" International Journal of Electrical Systems Science and Engineering, volume 1 number 1.
- A.J. Al-Shareef, E.A. Mohamed, and E.Al-Judaibi, "Next 24-Hiours load Forecasting Using Artificial Neural Network (ANN) for the western Area of Saudi Arabia" 1-King Abdul-Aziz Univ., 2-Qassim Univ., 3-SEC-WOA; KSA
- 3. H S. Hippert, C. E. Pedreira, and R.C. Souza. "Neural Networks for Short-Term Load Forecasting: A Review and Evaluation, "IEEE Trans. Power Syst., Vol. 16, no. 1, pp. 44-55, Feb 2001.
- 4. O. A. Alsayegh, "Short-Term Load Forecasting Using seasonal Artificial Networks", International Journal of Power and Energy Syst., Vol. 23, no. 3, pp. 137-142, 2003.
- 5. I. Drezga and S. Rahman, "Short-Term load Forecasting with Local ANN Predictors, " IEEE Trans. Power Syst., Vol. 14, no. 3. Pp. 844-850, Aug 1999.
- 6. Ammar Khalifa Mahmoud, "Short-Term Electric Load Forecasting Using Artificial Neural Networks, 1995." M.Sc Thesis, Faculty of Science, zagazig University, EGYPT.

7. Paras Mandal, Tomonobu Senjyu, Naomitsu Urasaki, Toshihisa Funabashi, "A Neural Network Based Several-Hour-Ahead Electric Load Forecasting Using Similar Days Approach", Faculty of Engineering, University of the Ryukyus, Japan, 13 Sept, 2005.