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AN INTEGRATED FRAME-WORK
FOR EXPERIMENTAL INVESTIGATION
BY SIMULATION MODELS

By
*®
Motaz KHORSHID .,

This paper is addressed mainly to researcher who

wishs to conduct simulation experiments on models repre-~

senting management and economic systems. Our main ambi-
tion is to show him how can controled experiments be
achieved through discrete event simulation and to make
him aware of the important statistical aspects of this
technique. )

Once a particular model is build and its computer

program is prepared, the main task will be to manipulate

computer runs in a way to get the desired information
about the behavior of the simulated system, In the
present research, we develop an integrated, framework for
investigating simulation models and analyze the follo-
wing three main strategic and tactic problems;

i - How each of test runs is to be executed and
how to estimate simulation run length?

ii - How to design an experiment in order to explore
the underlying mechanism governing the behavior
of the simulated system?

iii - How to select an experimental plan in order to
find the optimum operating conditions of the
simulated systen.

1. Introduction

The use of coﬁputer simulation technique to con-
duct artificial experiments on numerical ﬁodels of
complex systems, is an increasingly important tool in
many desciplines todéy. Computer simulation offers
many features that make it an attractive experimental

method for studying management and economic systems.

* Institute of Statistical Studies & Research, Cairo
University, Egypt.



Some examples of such features are,’the ability to test
and evaluate new‘systems in advance, the ability to iden-

tify and control the source of variation in the experi-
ment, etc. [16,29].

These advantages have encouraged operations
researchers and statisticiens to improve its practice
through the use o£ differeut statistical techniQues to
design and analyze simulation experiments [16,18,21,
28,29,30,34]. The results of these studies demonsfra-
te the need to consider twé problems., First, the
special circumstances of simulation that lead to misi-
nterpretation of results and then misunderstanding the
simulated systems. Second; the difficulty to achieve
the assumptions of the statistical theory, as indepe-
ndence and homogeneity of variances. So either we
_manipulate,simulation runs to match these assumptions,
or we hope that the selected techniqueé are not affec-

ted by their violation,.

The pﬁrpose of this paper is to develop an
integrated framework for 1nvestig§ting,,management
systems by simulation technique and to find satisfa-
ctory solutions to problems that we might face when experi-

menting simulation models.

We suppose that simu}ation experiment is con-
ducted in order to achieve two objectives; i) Investi-

gating the relatiohship .of simular response to input



specifications in order to determine the underlying mechanism
governing the gimulated process; ii) Finding the levels
of input specifications at which simular response 1is

optimized.

As any statistical investigations, we begin by

selecting a samplggg_plan which specify, how each of

test runs is tb be executed, and how to determine
simulation run length. The second phase, 18 to

design an experiment that will yield the desired

information. Finally, a data analysis technique is

to be choosen in order to reach some conclusion

about the simulated system,

In section 2, the mathematical base of simula-
fion experiment 1is presented, the simular response
function is defined, and different experimental desi-
gns are formulated. A detailed discussion of the
steps needed for investigating simulation models,

apears 1in the remaining sections.

2. The Mathematical Model

In many simulation models the process of interest
appears as 8 stochastic process(l), {Y(t),-°§t§?}.
Considering discrete event digital simulations, we

assume that during an interval At the process shows

(1) We will consider only the stochastic simulation
models as most management or economic systems
inevitably appear random to sone degree in nature.

-



little, if any, change so that observing Y(t) at
periodic interval At result in no loss of information.

For convenience, let At be unity, then

(1) 4 Yt TY(t)

so that the sequence {Yt; t=0,1,2,...,%} corresponds
to the Process {Y(t)} at all integer values of the

index t.(l)

-

In ordér to study several processes of interest,
generated by different environmental conditions of input
specificationa,' we would like to aquire a quantita-
five characterization of each o? them, The mean of
the process serveslgenerally as‘the mathematical dig-
criptor. VLet {Yt; ten} be a time series of length

n observed during the simulation run, the mean of the

process "u" can be estimated by:
_ n
(2) Y =n I Y

where Y is called "simular response".

Sinée the stochastic features are spawned in
the simulation model by incorporating the random number
seed as an integral part of input:specifications, the
response Y becomes a random variable, becﬁuse‘it is a

transformation not only of the environmental conditions

'Uﬁ.xz,u.,xp"ﬂnn also of the randomly selected seed "r".

(1) The index may be the time, for example Y may define
the number of jobs in a production system, It may
simply denote order; for<e¥gmple Y, may represent
the waiting time for the t job to receive service.



This relation is defined as:

(3) Y = ¢(x1,x2,...,xp;r) = ¢(;,r).

Then for each permissible specification of
environmental conditions ;, the set of all possible
responses, (which arise from the selection of different
random number seeds),might form a probability density

v (1)

function for simular response Y.

Consequently, the aim of the experimenter will be
to estimate the moments of this distribution, Specifi-
cally, expected simular response "y" and variance of
simular response var(?), can help him in explaining

the particular nature of the simular density function.

Then, regardless of the experimental objectives,
we should define a procedure for estimating the mean
and the variance of simular response; i.e to select
a sampling plan. Once a method for their estimation

is selected, we can proceed to the study of Y as a

function of the p environmental conditions.

The environmental conditions or experimental
factors are categorized as qualitatives and quantita-
tives.(z) Although the random number seed "r" consists

of real numbers, it could not be classified as

(1) A detailed discussion of this point can be found in
Mihram [34] pp 261-267. -

(2) Examplei of qualitative factors are policy specifi-
cation, or discrete environmental conditions. Quan-
titative factors are examplified Dby input parameters
that can usually be thought asg continious variates.



quantitative factor because Y will probably not be
continious function of it. The random number seed 1is
then unique among quantitative factors, and relation

(3) can be written:

(4) Y = ¢(x1,x2,.,,,xp) + €(r)

where €E(r) is a random effect dependent upon the random
number seed r. Further, if we assume that &(r) is
independent of the factors (x,,%X,,...,%x_) and that

172 p

E{e(r)}=0, the expected simular response can be defined:
. -— -+
(5) EC(Y) = ¢(x1,x2,...,xp) = ¢o(x).

>
It is the nature of the unknown function P(x),

termed simular response function, that we try to inves-

tigate by s;mulation experiment.

In practical simulation situations, any gxtempt
to develop the exact form of ¢(;) could not be justified
from economical point of view. In add;tion,{for many
experimental purposes, it is unnecessary to comnsider
the form of the true function, & flexiable graduating
function, for example a polynomial, will often be
satisfactory to expfess the relationship between E(?)
and the "p" factors. Fﬁrther more; many experimental
strategies proceed by dividing the wﬁole operability

region of factors space, iﬁﬁo'a number of smaller



regions of immediate interest. Withen these regions
of interest, the experimenter may feel it 1is reasoﬁable
to represent the response gunctibn by a known function-
al form, although he may know that such representation
would be quite inadequate over the whole operability

region.

As a result of the previous discussion, the

simular response function may be approximated by
-— - - -6
(6) E(Y) - f(xl,xz,...,Xp;el,ez,.-.,ez)cf(x. )

where £ is a known functional form indexed by some

unknown vector §,

-
The way by which we investigate the function f(x,g),
in order to yield information about gsimulated systemnm,
depends on the experimental objectives. Accordingly
we destinguish between two types of experiments,

exploratory and optimization.

2.1. Exploratory Experiments

1f the experimenter wish to study the relative
importance of the factors ; as they affect the expected
simular response, he may select one of the following

experimental designs.(l)

(1) In most designs, the constraint of experimental
budget is considered either Dby fixing the number
of experimental points or by selecting the plan
that reduce this number as poséible.



i) Screening designs

At, the begining of investigation, specially with
complicated simulation modeis, the experimenter may face
the problgm of_so many factoré. It'may happen that not
all.the p factors are important but only a few, say

p' factors,Therefore we may screen for these factors.

ii) Designs for'Estimating Parameters

whén experimenter has a prior knowledge about the
simulated system due to.theoritical backgrund or from
previous investigations. He mai assume that a pafti-
cular functional form f(;,g) is a good approximation
to the true response function ¢(;) in such a way that
bias due to inadequacy of f(;,g) to represent ¢(;) caﬁ
be neglected. In such case, his goal will be to select
an experimental plan to estimate the unknown parameters

3 s0 that the variances of the estimators are minimized.

i1i) Designs for Exploring Response Surface.(l)

When knoﬁledge about simulated system is limited,
the object is .to approximate, withen a given region of
the factors space, the function ¢(;) by some graduat;ng
function f(;,g) whiéhAmost closely represent the true
simular response function. The criteria of closeness

is measured by the variance error caused by sampling

[

(1) These designs treat only the case of quantitative
factors.' )



variation and bias error resulting from 1nadequacy of

+§ -
£(x,0) to exactly represent ¢(x).

2.2, Optimization Experiments

The purpose of this type of experiments is to
find the combination of factor levels at which the simu-
lar response function ¢(;) is optimized. Researchers
of management science face frequently this experiment,
The maximization of profit or the'minimization of
cost is a common objective in management studies.

To copclude, any attempt to develop an experimental

method for investigating management system8 by simula-
tion, necessitate the choice of a sampling plan which
defines an efficient procedure for estimating the
variance of simular response. " The estimated variance
measures the accuracy of results and then can be used
to determine the appropriate run length. HaQing acco-
mplished this task, an experimental strategy may be
defined for investigating the inter-dependence between

the simular response and the experimental factors.

The rest of this paper will be devoted to the

detailed discussion of the previous statistical aspects

of simulation experiment.



3. The Stochastic Sequence ﬁenerated by Simulation

At the begining of investigation, the study of
the stochaétic sequence, {Yt,t=1,2,...}, generated by
simulation,is important for the understanding of the
process under study, and the reduction of the experi-
mental effort needed in the next steps. The following
three characteristics may provide the required infor-

mation.

Stationarity., A sequence is said to be strictly sta-

tionary if every series, {Ys'Ys+1""’Ys+n}’ for
s=1,2,...,%; will have the same probability density
function, A ﬁide sense stationary sequence, which is

less restrective, will have the mean:
(7 E(Yt) =y < @
and the autocovariance func@ion
(8) R, = B[y -mcy, -W] , s=0,1,2,...

The importance that the sequehce, generated by simula-
tion, be a stationary one is explained by the fact
that its autocovariance function Rs depends only on
one variable. Moreover, the spectral density function
can be represented as the fourier transformation of
the autocorrelation function [16]. These two facts
are of immense assfstance to facilitating the analy-

sis of the sequence.



The existence of a trend in the generated squence
wili cause non-stationarity. In case of simulation,
we can eliminate such trend, either by using an elimi-
nation technique [}4], or simply by the clever choice
of simular response. 1f we cannot avoid non-station-
arity, replicating simulation runs will be recommended
in order to generate uncorrelated observations and
then to avoid the problems'aésociated with the es;ima-

tion of R_.
8

Autocovariance Function. This function gives

the experimenter an initial guess about the independence
between events and then the degree of congest;on of

the simulated system. Since high congested systems
need longer run lengths to liberate results from the
imposed ijnitial conditions, the choice of a startipg
policycl), and the determination df sample size

benefit from knowledge about autocovariance function.

This function is also used in estimating the precision

of simular response Y in case of autocorrelated obser-

vations.

Spectral density function. This function represents

another measure of dependence between observations in

the stochastic sequence. It is defined as:
(9) A =a YR’ I R cos ws; we{0,7}
W O = - s ] » ’

(1) See section 5.1.



The estimate of Aw reveals the prominent periodicities
in the genérated time series. In simulation experiment
the periodic components may apear as a consequence of
building in the experiment rules thﬁt contribute an
element of regularity recurring behavior to.the.seque-
nce'of interest. The existence of periodicity is un
desired because 1t adds unnecessary Qariation to the
sequence and create statistical problem when estima-
ting Rs [16]. The formulas for estimating Rs’ Aw,'
can be found in references [16,34]. For their theo-'

ritical development see [22,36].

4, Termination rules in simulation

When conducting simulation experiments on models

representing real systems, two situations can be faced:

i) Simulation run can be prolonged indifinitely.
In that case we can increase sample size either
by continuing the run or by replicating it. In
either cases a stopping rule is needed to end

simulation experiment, This situation is desig-

nated "non-terminating systems", Many simula-
tion models behave as non terminating systems,
for example, Jobshop, inventory or queueing

models.

ii)- Simulation run ends with the occurance of a par-
ticular event. In that case the only way to
increase sample size is replicating simulation

runs. This situatiod is designated "terminating

systems"™ , It can take one of the following forms

[30]:



- Phipically te;minating system. Fof.examplé,
the simulation of equipment faiiure where run

ends when equipment breaks down.

- Phisically non-terminating systems which behave
exactly‘like terminating systems. For example,
a bank that closes down at the end of the day,
sefves the remaining customers, and starts the

next day in the empty state.

- Phisically non-terminating systems but experime-~
nter is interested in transient behavior as a
function of the initial conditions. Theh as
soon as the system reachs the steady atate,

the simulation run ends.

The classification of simulation model as termina-~

ting or non-terminating one will have an important impact

on the selection of a sampling procedure (see next sec-

tion).

Sampling Plan

This section addresses two central problems in

simulation methodology. The estimation of simulation

output accuracy and the determination of computer

run length. We begin by explaining the initializa-

tion of simulation run and its impacton the obtained

results. Then a particular attention will be devoted

to variance and sample size estimation.



5.1 Start up Policy:

In the begin;ng of simulation run,‘the experime~-
nter should specify the initial state of the system
entites,(l) If run length is not sufficiently large,
the obtained results will be biased by these imposed
conditions, The magnitude of this biés depends on
the selection of the initial conditions, the length

of simulation run, and the degree of autocorrelation

between events.

To reduce fhe effect of this bias, we can delete
"d" observations from simulation output and choose the
appropriate initial conditions "I". The choice of .
"I" and "d" defines a start up policy [43,44]. The
problem is that the deletion of observations affects
not only the bias of simular response but also its
variance. The effecton variance is to increase it.
Consequently, the trade off between bias reduction
and variance increase has to be considered in selecting

a start up policy.

In mathematical term, for a generated sequence

{Yt,t=1,2,...}, the truncated mean is defined'asf

- -1 n
(10) Y = (n-d) z Y
n,d t=d+1 ¢

and the problem is to select, ] and d to minimize:

(1) For example, in queueing simulations,the investi-
gator sets, the number of jobs in system, status
of each job, status of each, server, etc.
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- 7 5 2
MSE = Var(Y /D) + [E(Yn'd/l) - u]

where the first term of the objective function is the
conditional variance, The second term defines the

bias.

In order to find the optimal solution, it is
necessary to postulate a mathematical model represen-
ting the process {Yt}, which is difficult to realise
with complicated simulation models. Any how, general
hypotheses can be advanced about the nature of thié

solution:

i) When the bias ternm [E(Yn,d/l)-u] decreases rela-
tive to variance term, as the case of systems
with low degree of congestion, a policy of many
short runs with small number of deleted observa-
tions d is advantageous. The application of
Wilson's evaluation procedure [43] to a finite
state markovian systems indicated that judicious
selection of I appears to be more effective than
truncation, and he recommended the steady state

mode as the best initial condition.

ii) When the variance term [Var(?n,dll)] decreases
relative to bias term, as the case of more com-
pilcated models where the degree of autocorrela-
tion between observations is high, and then the
influence of initial conditions decays very
slowly. ‘A policy of fewer runs, with more deleted
observations d andzlonger run lengths is

advantageous. In such case, we ' recommend the
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1
utilisation of the "empty and idle" state( ) as

initial condition since it reduces the programming
effort. Then we can use one of the proposed
hehristic rules [44] to take a decision about the

number of observations tb be deleted.

5.2 Variance Estimation

Being able to estimate, accurately, the variance
of simular response is a major step towards determining
the precision of simulation output,. It remains to
postulate the sampling distribution of Y in order to
derive a confidence interval for the population mean
v,

In simulation literature, there are five methods
for estimating the variance; independent replications,
subrun or batch ﬁean method [12,18], independent cycles
[20], autocorrelation method [16], and autoregression

anaiysis [19].

The first three methods manipulate simulation
runs to get independent observations. The last two
methods use a single simulation run with autocorrela-

tediobservations.

Except the case of terminating systems, where

(2)

we are forced to use independent replications

(1) An empty and idle state !'means that in the begin-
ing of simulation the system is empty of temporary
entities. For example, we begin with no customers
in queueing systems or no Jobs in Production System".

(2) By definition, in terminating systems,simulation run
ends with the occurance of a particular event
and replication is then the only way to estimate the
variance.



(see section 4), there must be some criteria for evalua-

ting these methods. We considered the following crite-

rias as the basis of our choice:-

The precision of the obtained estimate

.The effect of increasing the complexity of the

system on the behavior of the method.
The simplicity and ease of calculation

The possibility of incorporating the method

in the main simulation program.

First, we selected the methods generating independent

observations for the. following reasons:

- )

ii)

iii)

iv)

Second,

The results of the empirical comparison of
Hauser [21] showed that the method of subruns
take half the time needed for the autocotree

lation method.

Fishman and other authors [16,18,12] concluded
that autocorrelation method is excessively
costly in practice and requires a deep knowle-

dge 61 time series analysis.

The confidence interval estimation based on
the central limit theorem, is more accurate

when using independent observations

Independent observations permit the use of
the robust statistical techniques of the

theory of experimental design.

oﬁr choice of the independent subruns as the -

best alternative is explained by the fact that, with

complicated simulated systems, the independent



replications method will be costly, as it requires
adjustment for inital conditions and truncation point
on eacﬁ’run. On the other hand, subruns method can
be easily incorporated in the main simualtion program
so that output accuracy can be measured sequentially.
Finally, we did not consider independent cycles since
its generalizh}ion to most simulation situations is

discussable.

In subruns method, the generated simulation
sequence {Yt,t=1,2,...} is divided into k subruns,
each contains "m" observations such that the autoco-

rrelation between subrun means is approximately zero.

Considering the subrun means:-

m
-1
(11) Y, =m 151  SPTIO ; Jf1,2,...,k
and the grand mean:
. _ -1 k
(12) Y = k I Y
o J:l J)m

then the variance of ?kcan be estimated by:

(13) var(¥) = s%/k
where

2

(14) s° = (k-1)'.1

As m increases, we get more accurate results
because the following,relafibn holds with negligible

error:



(15) Cor(Y ) =

j,m’ Yj+1,m
on the other hand k must be sufficiently large in order
to obtain a more precise estimate of the variance and
then an accurate wedth of confidence interval.

Since we can simply prolong simulation run in' order to
achieve the most suitable k, the major problem 1s to

*
find the smallest m, say m , such that (15) holds.

In some simulation‘experiments a prior informa-
tion or the use of the estimated autocovariance func-
tion (see section 3), can provide an approximate estima-
te of m*. Two more explicit proposals ate presented
by Mechanic and Mckay [33] and Fishman [18]. Mechanic
and Mckay developed an jterative algorithm which was
tested by Law [32] and the results were encouraging.
The main disadvantage of this method is the need for
a large sample size. Alternatively, Fishman proposed
a method, that relies on the Von Neuman ratio, for
testing the hypothesis of independence in a time
series. The method has many attractive features such as,
simplicity, the possiblity of incorporation in the
simulation program, and the ability to deal with
small samples.

Once the variance of simular response is estima-

ted, we can calculate an approximated (1-a) confidence

jnterval using results of the centrﬁl limit theorem-~



(16) T+t . [varD]?
k-1

where 0 is the level of significance; t(&) 1is the
k-1
1- % point of t distribution with k-1 degrees of

freedom; and Var(Y) is defined by (13)

5.3, Simulation Sample Size

In statistical literature three sampling proced-
ures are propoged, fixed sample size, two stages samp-

ling and sequential sampling.

In simulation experiments, fixed sample means that
we select the number of subruns k before experimenta-
tion. Two stage pampling could be achieved by begining
with an initial numbér,of subruns ko, then we test
duriﬁg simulation run if we need additional observations
or not, With sequential sampling algorithm we esfimate
successively the variance or‘confidence interval and
terminate simulation run when the desired accuracy is

attained.

Each ofvthe previous sampling procedures has its
disadvantages when used with simulation. Fixed aappling
assumes the knowledge of variance before conducting
simulation runs. It is also designed to match explora-
tary experiments and is more adapted to case of quali-

tative factors. The efficiency of the two stages



procedure is affected by the choice of ko. Large ko
may cause additional unnecessary observations, inversly
too small ko may lead to inexact variance estimator,
(the number ofAdegfees of freedom (k -1) will be
small). The sequential sampliné may result in exce-
ssive calcuiation effort as a consequence of successive

variance estimation during simulation run.

So a compromise between the three previous sam-
pling procedures is needed in order to increase the
accuracy of simulation experiment and to reduce calcu-

lation effort.
We propose the following iterative algorithm
that can be incorporated in the simulation program:

1. Use one of the methods estimating fixed sample size

to calculate an initial guess of the number of

observations, '"say ko"

2, Put k + ko; n « mk, vi « 0

3. Generate n observations by simulation

4., Compute [Yj,m; j=i+1,1+2,...,i+k] using (11)

5. compute S2 using (12)‘and (14) .

6. Calculate k* = (tk_l(a)/c)z. S2
where c is the desired wedth of confidence inter-
val and 1is spgcified by the experimenter.

7. 1f k*<k end simulation, and appropriate sample

size will be "k".
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* *
8. Otherwize set i + k, n + y(k -k).m; k « Yk +(1l-Y)k
where 0 < Y < é.

9. Go to 3.

Notice that in step 1, an 1n1t1a1.guess of kO is
estimated using fixed sample size formula,[41,45].
This reduces the total number of‘itegations and avoid
the risk of too sma;l or too large initial gample
size.(l) Furthermore, in étep 8 we generate Y(k*-k)
instead of (k -k) additioéal observations. This sca-
ling 1ncreases_thé numﬁer‘of iteratiohs,.but more impor-
tant decréases the proﬂability of collecting uﬁnece—
ssary obseivations [19]. This algorithﬁ is extensively
tested by author énd prbved to be more efficient than
the thrée previoﬁsly stated sampling procedures, if

appropriate "Y" is selected. (see Khorshid [28] PP

69-80) .

6. Experimental Design Problem

At this pbint of discussion, it is necessary to
defide the experimental design problem and the basis
for comparing different'desiéné in or&ér to facilitate
the presentation of thé'experimental plans in the

forthcoming sections.

(1) In general k 1is selected to be less than the
calculated value since it is just an initial
guess which will be augmented to get the appro-
ximate sample size.



6.1, Definition of an Experimental Plan

Consider the approximated simular response func-

: —_ >
tion. Y = f(x,g) + €(r) where

-
X = (xl,xz,...,xp)' is a vector of p variables,:
(experimental factors) the setting of which

determine a simulation run,

3 = (61,62,...,61)' is a.vector of unknown
parameters
and €(r) is a random effect dependent on the random

number seed r.

->
Regardless of the selected function from f(x,g), the

experimenter generates by the simulation program N

observations {;1,52,...,5&} corresponding to N different
-> -+ -+
combinations of factor levels {xl,xz,...,xN}, which

are called "the experimental points”,

If we grouped the N experimental points in an (Nxp)

matrix we obtain the Design Matrix

- — - _p' -
X117 *12 ' *1p *1
+7
X517 %22 ' *gp )
(17) D = | . o= i
§|
Xy Xyp ococ X4y x]
-’.l
le xNz .o » pr-‘ i xN ]
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The specification of the elements of D and the

+
form of f(x,g) determine an experimental plan,

Once this fask'is a chieved, we can estimate the unknown

parameters 3 using the model,

T o= #(x .8) +e(r,) ; i=1,2, N
i"’ (xi’ ri ? .D.!"°D

which can be defined in a matrix notation by
-+ >
(18) Y =x8 +¢€
where

—

- — —
Y = (Y, Y,....Y )' is8 a vector of N'observations

1 "2 N

(simular responses).

- (f(r.) vlr,)) L. l(r"))' is u vector aof N

random affecin.
X is (Nx{) matrix which is defined by:

af(§i,§) : |
X = {_-—5-6-——_,.}"'3 H .i=1’2,000'N; J=1’2,c00,2
j ~ .6= 0 L
Note that in case of ndh-linearity of parameters the
X matrix contains some of the unknown parameters. It

is therefore necessary to use an initial guess 30 in-

order to find estimates oflg [4].

6.2. Basis for Comparing Designs:

An experimental design should be judged partly

by the precision of the estimated parameters and partly

[

by the magnitude of the poséible bigs resulting from

the 1nhdéquecy of f(;,g) to exactly represent ¢(}),,



The parameters can be estimated using least squares

formula:
a)
v - ->
(19) T - xnt x¥

and its variance~-covariance matrix is defined by:

~

(20) Var(g) = (x'x)"t o2

where (X'X)-1 is called the precision matrix and 02
is the error variance.
The formulas (19), (20) assume that
-’-
"E(e) =0
B 2
E(e €') = 10
which means independence and homogeneity of variances.
In case of simulation we can manipulate runs to obtain
uncorrelated observations (see section 5), but the

variances are generally non-homogeneous. Then the

error variance-covariance matrix is defined by:

P2 -
0
%
02
> 2
E(E E') = .
¢ 2
LO ON_

-5
dividing E(€ E') by a common denominator, say 02, weget.
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where vV = .

and the generalized least squares formulas will be:

~

2o x vintxo v1y

(21)

(22) var(®) = (xr VO X) " o0

since it is a general practice to replicate simulation
run or to devide it into uncorrelated subruns, an esti~

<> >
mate of the elements of E(¢ €') can be obtained by

~ ~

2 —
01 = Var(Yl) ’ i=112v'-~nN'

Then the precision of the estimated parameters depends

, -1 -1 . -1 N

on (X'X) or (X' V X) which in turn depends on the
arrangement of the experimental points. These matrices

supply therefore an objective basis for comparing

designs.

From bias view point suppose that the postulated

model is:

? = X§'+ Z

but the true model could béf

—r= 3 -+>
¥ = xB + X, 31 + &



where xl is (Nxs) matrix and 61 is (s8x1) vector represe-

nting the parameters which are not considered by the

experimenter.

I1f we used the formula (19) to estimate the para-

meters % the expected value of % will be [5,7,8,9]

(23) CE@) =8 +a 31

where the alias matrix A is defined by:

(24) A= (x0T x X,

since the bias depends partly on A and then on the
arrangement of experimental points, the matrix A can

(1)

be used to compare designs.

7. Exploratory Experimenta

When experimenter specifys how each test rum is
to be executed and how to determine‘sample size, he
may turn toward the choice of an experimental strateéy
in order to explore the underlying mechanism governing
the>simu1a£ed process. As we indicated in an earlier
section, the ;thtistical theoryroffers three main types
of exploratory exéeriﬁenté:

- 8creening designs
- Designs for estimating parameters

- Designs for exploring response surface.

(1) Note that estimating A requires some guess about the probable ke
form of the true model. For example., In building a first -
order response surface design, we suppose that postulated
model is first order polynomial, while the true model might
contains second order termgl. The selected plan is the
judged by both A and (X'X)
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7.1 Screening Designs:

It simﬁlation experiment contains so many factors,
we may wish to conduct a pilot investigations with the
smallest number of runs in order to detect the most
important factors. These designs could be helpful to
simulatioﬁ user in two circumstanceé. When he has no.
theoritical back ground about the simulated systen
(as the case of new or hypothetical systems), or when
he is interested in a sﬁall subset of factors, but

he do not know the relative importance of this subset

when considering all factors,

In statistical literature many designs are deve-
loped. Fractional factorial designs [6], Randon
designs [40], super saturated designs [3], and group
screening designs [37]. The investigator can select
the design which fit his particular experimental

situation.

The use of fractional factorial designs in

screening experiments is reported by Box and Hunter
[6]. These_designs are simple to construct, easy to
conmpute, (as (X'X)—l is diagonal), and provide minimuﬁ
variance estimates due to the orthogonality of the
design matrix D. Nevertheless, the number of experi-
mental points N, of these designs, is a function of
the number of faétors p."éé; if p is very lage, tob
many observations will be peeded. Also, this type of

designs exist only for N multiple of 4,
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In random designs, all or some of the elements of

the design matrix D is selected randomly. The attractive
feature of fhese designs is that the number of observations
N is indgpendept of the number of factors p. So, N may

be chosen even smaller than p. Unfortunately, these
designs do no;’provide minimum variance estimates since

we cannot guarantee the orthogonality of the columns of

the design matrix.(l)

Super saturated designs are developed by booth

and Cox [3] they proposed a number of designs, with N
smaller than p. What N<p, not all the p columns of

the design matrix D can be orthogonals, and theﬁ
designs do not guarantee minimum variance. Nevertheless,
we can increase the precision of the design by miﬁimi~

zing the maximum value of the inner product of columns

of the D matrix.

™M=
>
>

(25) Min Max |
: D j'#Jep 1

Booth and Cox used a computerized algorithm to gene-
rate these designs for each combination (N,P). They

showed also that these designs are more accurate than

random designs.

In group screenin designs, the p factors are
gro ng designs

combined into a number of homogeneous groups. Each

(1) Several authors [5,6,8] proved that orthogonality
18 a sufficient condition for minimum variance in
case of linear models .



group is considered as a single factor. The group
factors are theﬁ‘examined by a fractional factorial
design. The non-significant group factors can be
dropped frqm further investigation and the remaining

factors are split into smaller groups, and so oh.

To conclude, with very large numbe: of factors
or when experimental budget does not permit a number
of runs N>p, the super saturated designs are recommen-
ded since we can use a computer algorithm to generaté
designs for any. combination (N,p), withlémall variance.
Since Booth and Cox concluded that their algorithm is
time consuming, the authof proposed a more efficient
élgoriumathat provides approximately the same variances
(see [28] pp 100-103 )., 1If, on fhe other hand, we
can conduct e#periments with N>p fractional factorial designs
may be applied since they provide minimum variance
estimates, can be augmehted for further investigations,
and permit the study of confounding structure of

effects.

7.2 Desiggs for Estimating Parameters

As we mentioned in section 2, these designs can
be used in simulation.studies, either when prior kﬁo-
wledge and previous experimentation permit a satisfa-
ctor& approiimation of response funcfion, or when bias

0
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error is small compared to variance error. This may be
a consequence of restricting the factors space to ‘a

small region of immediat 1nterest{

Two basic approaches for designing experiments
can be used in case of simulation.
i) To use a simple factorial or fractional
factorial designs
ii) To selected a design based on a variance

criteria, as D-optimal designs.

In Factorial designs the total number of experi-

mental points N is fhe product of the number of ievela
of each facfor; Then f§r p factors witﬁis levels each
N=Sp points. If we considered, in addifion, thé fun

length or number of replicafions ber point, the amount

(1)

of computer time will be unmanageable. Fractional

factorial designs enable simulation user to estimate

model para@eters with small number of points. ‘The

pricg we pay is the possible bias in estimator. For
example, designs of resolution III [GJ; comprise no
more than N=p+1l points, but main effects will be biased
by interaction effects. The most attractive features

of these designs are simplicity, ease of computation

due to orthogonality, and the possibility of augmentiﬁg

design to match more complicated mathematical models,

(1) For example, if p=7 and S=3, then N=2187, So assu-
ming that each run needs 2 minutes, then total com-
puter time will be 72 hours.



(See Box and Hunter [6]). Unfortunately these designs
are efficient only for estimating pa;ameters of linear
models, (the variance of the quadraticbeffect is not
mini@um [11]). In addition the design is restricted
to specific numbers of factors "p! and factor levels

lls " .

The second approach is the use of an iterative
algoritﬁm, bﬁsed on a variance criteria, for selecting
an experime&tal plan, The msot attractive criteria
is the maximization of "det{X'X}" and the developed

kdesign is called D-optimal design‘l).

The _ basic elements of the fheory;qf optimal
design are developed by Kiefer [24,25] and Kiefer and
Wolfowitz [21]. Further contribugions and proposed
algorithms are presented by Federov [15], Wynn [46], |

and Atwood [1].

~Iterative algorithms' are available for generating,
absolute optimal designs, optimal designs corresponding
to a fixed number of experimental points, and designs '

for estimating a subset of model parameters.

The author thinks that D-optimal designs can
play an important role in simulation exploratory experi-

ments, and it is preferable to fractional factorial

(1) For the advantages of the criteria "Max.det{X'X}",
see Box and Draper [4] and Khorshid.M [28] pp 120-121.



designs for the following reasons;

1)

ii)

ii1i)

iv)

v)

vi)

The design procedure is nbt affected by any

~changes in the postulated model.

There is no restriction on the number of
experimental points N, the number of factors

p,- and factor levels, This is not the case

with fractional factorial designs.

The D-optimal algorithms can handle diverse
design situations. For example, augmenting
a planequxperiment or estimating a subset

of model parameters,

Sequential design of experiments 1is easily

‘handled, since resulting design of first

stage can. be used as an initial solution.

for the second stage,

The D-criteria is easily adjusted if the
problem constraints are changed. For exa-
mple, if independence and common variance
conditions are not achieved, we can maximize
"det{x’ v-! x}n, where V is the matrix of
variances-covariances of errors or its

estimate.

When finding absolute optimum design presents

. difficult computing problem, the evaluation

of det {X'X} at specific points in the factors
space enable a better, if not the best design.
The approach of evaluating only a number of
candidate points, facilitates the programming
of the search routine, permits the exclusion
of undesired points, and finally enables the
handling of qualitative factors.



vii) Some fractional factorial designs are gemnera-
ted by D-optimal algorithms, if the model is
correctly identified and the experimental

) ‘region is restricted to the cubic region
[4]. |

The author proptsed a number of modifications to the
existing algorithms and conducted a detailed comparative
study in order-to obtain more accurate designs with
less céﬁputatlonal‘tlme ([23] Pp 127-144 )t
Finally, it should be noted that statistical literature
offers many other design types, for example, latin '
squares, Randomized block, etc. But we think that

they are less adapted to simulation circumstances.

7.3 Dasigﬁs for Exploriqg Response Surface.

If nothing is known in advance about the orienta-
tion of the simular resptne surface ¢(x), our dbjectivé
will be to flnd,the'fhnctibn £(x,8), in a subregionA
of immediate igterest, that most closely retresents
the true,function, Th; folltwing requirement have
to be considered in comstructing a désién of this
type:

i) The design,ahqnld lend itself to be fitted into
a sequential program of_experimentation, so that
designs of higher order can be formed with mlni?

mum loss of information.

' ’ .
ii) The design should consider not only the variance
of estimates but also the inadequacy of the:

postulated mo¢e1 (bias error).



11i) The design should allow a check to be made on
the representational accurcy of the postulated
model. '
Four authors have contributed to the developement of
the basic response suface designs. Box and Wilson [ﬁ]
proposed the central composite design, Box and Hunter
[5] presented the concept of rotability, and Box and

Draper [8,9] defined the optimality criteria of a

design.

The author conducted a detailed Monte Carlo
studies in order to reveal the bias and variance chara-
cteristics of the response surface designs and to
select the most appropriate subset of them for simula-~-

tion experiments (see KHORSHID [28] pp 173-186).

These designs are important not only for explora-
tory purposes, but also for finding an optimal solution

using an experimental search procedure.

8. Optimizatibn Experiments

‘The purpose of these experiments is to find the
combination of factor levels at which simdlar response
function ¢(§) is optimum. In this case, the choice
of an experimental strategy depgnds on the type of
factors in the simulation model. When all factors
are quantifatives, an optimum seeking routine can be

used. But the existence of some qualitative factors,



as policy specificationg or operating rules; limit the
search procedure to the choice between a number of

alternatives,

8.1 The search for an Optimum Combination of factor

Levels:
When all factors are quantitativee,fhe investi-

gator will wish to find in the smallest number of simu-

o o

o
lation runs, the point (xl,xz,...,xp

), within the fac-

->
tors space, at which ¢(X) is a minimum or a maximunm.

Since simular response function iq not known in
advance and is subjected to random variation, we think
that khe most reasonable strategy will be to fit a
sequential program of investigation consisting of the

following steps:-

i) Divide the whole region of interest into a
number of small subregions, so that we can
explore adequately a small subregion with a

moderate number of simulation runs.

ii) Use the results obtained in one subregion to

move to a second one in which simuylar response

Y is better.

iii) Repeate the previous steps until the attain-
ment of a near stationary region where no
improvement in the simular response can be a-

chieved.

iv) In this limited region, conduct a more detailed
experiment in order -to determine the local

->
nature of the functiomn ¢(X).



In the following sections we discuss brie fly the
two main elements of this sequential program, seeking

" a near stationary region and exploring it.

8.1.1. Seeking a near Statiohér} Region

When the starting conditions of simulation are
fairly remoted from the stationary point, an optimum
seeking technique will be needed to move rapidly through

the factors space to a near stationary region.

Brooks [10]mcompared'£our optimum seeking
methods,‘sfeepest ascent, univariate, factorial, and
random'searchf _He concluded that, when sequential
investigation is possible, steepest ascent seems to
be superior to the others, except in case of larée
number of factors, where random search is more
effecient.(l) Recently, Smith [42] showed‘that ran-
dom search should not necessarily be the search
techniqué selected in prarﬁcal simulations even in
case of so many factors and he recommended the use

of the steepest ascent method.

Since the steepest ascent method is explained
in detail in Box and Wilson [7] and Davies [1@], wve
just mention, here, some remarks that should be consi-

dered when applying the method to simulation experiments.

(1) This is explained by the fact thgt, in random search
algorithm, the number of experimental trials is not
a function of the number of factors.



i)

ii)

iii)

Since we use the error variance to test the
adequééy of the fitted function and the signi-
ficance of model parameters, an accurate
estimate of the variance of Y is needed in

order to avoid any wrong conclusion.

As the steepest ascent method.is ‘affected by
the size of the experimental error [i], we
ﬁay tryAto reduce'it, by selecting a miﬁiﬁﬁm
variance design (see section 7.2), by increa-
sing simulation run length, and‘ifﬂposqible,

by using a variance reduction technique,

12 possible, provision should be made to

‘estimate some of the higher order coefficients
that were not included in the postulated

model, The study of these coefficients
will provide some indication of whether the
assumption that these terms can be 1gnored'

is a reasonable one or not..

8.1.2 Exploring the near Stationary Region

The experimenter may arrive at a near stationary

region either as the result of successive application of
steebest ascentvmethod, orvbecguse he has already found
it at the begining of his investigation, In éither
cases, only imhédiate neighbourhdod néed bé éxploréd

to determiné the iocal nature'ofrreépdnse fﬁnction

¢(§), and this may be done withoht excéséiveiy 1arge

number of exﬁ@rimental pbihfs. .

1



Although many auther have ignored the explora-
tion of near stationary region, and were only satisfied
by finding the approximated optimum point,we think that

it is an important step in case of simualtion for the

following reasons:

First,it should be remembered that because of
random error and possible lack of fit between fitted
equatién and the true response ¢(;), it muét not be
implied immediatly that the true surface has a maximum
(or minimum) at the selected point. So in practice
further exploration and confirmatory runs should be

performed arround the stationary point of the fitted

surface.

Second, the discovery of factors dependence of

a particular type may give us an idea about the cost

of departure from the optimum point, if it was impo-
ssible to reach it in préctice. For example, finding
the direction of a stationmary ridge means that we can
know the different combinations of factor levels that‘
optimize the response Y. Then the choice between these
alternatives can be decided according to the cost of

each combination or according to an auxiliary response.

Two exploratory techniques are proposed in the
statistical literature, canonical analysis [7,13]'

and Ridge analysis [14]. The author matched the two



techniques in a single computer progran in order to
have more robust conclusion. This can be done by using
canonical -analysis to reveal the factor dependence
withen the local stationary region, then using ridge
analysis to evaluate the locus of the obsolute maximum

or minimum when augmenting the expérimental region.

8.2. The choice between experimental alternatives

When simulétion model contains qualtitative factors,
as managérial polices or operating.rules, the search
procedu;e will be reduced to.the oﬁtimhm ¢hoice between
& number of experimental Alternativés. More specifica~
11y, it is required to find the combination of factor
levels corresponding to the best simular response ?,
such that the probability of correct selection (CS}
is a least P*, given that the difference A between

the best and the next best simular response is at

* ,
least & . This may be stated formally as:
: ok %
(26) Pr(cs/A > &) > P
* * '

where A and P have to be specified by the experimenter.
The previous formulation of the problem permits the use
of one of the multiple ranking procedures [2,30,31,35,

38,39]. Most of these methods assume normality, indepe-

ndence and common known or unknown variances.



In practical simulation models, the distribution
of the response Y is not known, variances are not known
and tend to differ So either we manipulate simulation
runs to meet these assumptions or we hope that the
effect of their violation is negligible.
After consulting serveral multiple ranking procedures,
the authers choosed three of them that seem to be attra-
ctive for simulation circumstances. The selected proce-
dures are,Bechhofer and Blumenthal [2], Paulson [38],
and Sasser et a1[39]. Bechhofer method is fhe only one
extensivly teetgd for its sensitivity to assumptions
violation, it is quite robust amirelatively efficient
[31].' ﬁnfortunately, it cannot capitalize on favorable
configurations of population means. Paulson's pfocedure
gives us the possibility to eliminate inferior populations,
so it might be advantageous when comparing a large ﬁumber

of alternatives.

The authors cpnducted a comparative study using
Monte Carlo sampling and two simulation models (see [2{]
pp 227-244). The results of this study indicate that
paulson method is the most effecient method, specialy
when the number of alternatives is large.. Bechhofer
method seems to be the best procedure from robustess
point of view, but unfortunately it require large sample

sizes when deeling with a large number of alternatives.



Sasser method, which is a heuristic version of Bechhofer,

is less efficient than paulson procedure.

To conclude, the results of this empirical study(l),

show that no ideal procedure that consider the particular
circumstances of simulation does exist in present time.
We recommend the method of Paulson when experimenter

is wary about computer time and the number of alterna-
tives is greater than 5, otherwize, Bechhofer procedure
seems to be the msot robust one, and it is relatively’

efficient.

9, The Proposed Experimental Plan

Although no one can provide a general experimental
plan for sucess in every case, it is possible to direct
simulation user to some choices that most suit his

experimental situation. This is achieved by the follo~-
(2)

wing steps which are written in an algorithmic form:

1. Conduct initial simultion runs to estimate the

characteristics of the generated stochastic sequence

(Yt,t=1,2,...) . (section 3).

2, If both degree of autocorrelation "cor (Yt,Yt+1)"
and size of simulated system are small go to step 3.
otherwige select a start up policy i.e the initial
conditions and the number of observations to be

deleted and go to 3. (sections 4 and 5.1).

3. If simulated model is terminating one use indepe-
ndent replications methbﬁ to estimate output accuracy

and sample size. (sections 5.2,5.3).

(1) See also Kleijmen. [31].

(2) An indication will be given to the corresponding sections

" of this paper which discuss each step



Otherwize, use independent subruns to estimate
output accuracy and simulation run length (sections

5.2,5.3).

If number'of factors or control variables is large,
conduct a écreening experiment in order to defect
the most important subset of them (section 7.1)-

otherwise go to step 5.

Select the experimental obJectives?
If an exploratory experiment is to be conducted go to step 6.

" ”" " " " ” " 9
.

If an optimization "

- 4

Postulate a mathematical model f(x,g) representing
N .

the simular response function ¢(x) in the selected

subregion of the factors space (section 2).

If it is desired to estimate parameters or to
evaluate relative effect of the experimental factors,
generate an exgerimental design which‘minimizes the
variance "Var(g)" using a D-optimal algorithm or
fractional factorial plan (section 7.2).

If it is desired to explore simular response ¢(x)

in a subregion of the factors space,select a

response surface design as central composite or

Box and Behinken designs (section 7.3).

Use a multiple regression routine to estimate
parameters and to test lack of fit and significa-

nce of parameters and go to step 10 (section 6.1).

If simular response function ¢(;) does not_contain
qualitative factors:
- Selectan initial point in factors space-
- Search a stationary region using the steepest
ascent method or a direct séarch method.
- Explore the stationary region using a response
surface design 1in order to estimate an optimal

point (section 8.1).



If simular response function ¢(;) contains qualitative
factors use one of the multiple ranking procedurés to
select the bestbexperimental alternative. Use Paul-
sons method if number of factors p>5, otherwize use

Bechhofer's procedure (section 8.2).

10. End simulation experiment.,

10, Conclusion

In the present paper, we developed a complete
theoritical base for experimenting management models
by simulation technique, The main effort was devoted
to the adaptation of the statistical theory of experi-
mental design to the particular circumstances of
simulation studies,_and to the development of the set
of techniques that'increase simulation output accuracy
and reduce the cost of experimentation. It is our
hope that the present work will direct simulation
user‘toward the appropriate selection of a sampling
plan, and the efficient design and analysis of his
experiment. This work should be subjected to furtﬁer
modifications and perfection in order to reach a. robust
and integrated experimental theory for investigating

systems by simulation models.
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