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Introduction

Global optimization involves solving mathematical programming problems
that may have distinct local optima. In this paper, I present a method for-
locating a global minimum (maximum) of a concave (convex) function subjected
to linear inequalities. From the mathematical point of view, the concave and
convex functions are especially interesting in the theory of nonlinear pro-'
Agramming because they have special properfies overcoming many difficulties
that characterized the nonlinear programming problems. From the economical
point of view, a concave function can arise quite easily in economic field
because of economies of scale. For in general the cost of production does
not increase in pboportion to the increase of the number of units produced.
In reality, as the number of units produced increases, unit costs decrease.
So ifjgi CiXi represents a cost function, where Xi is the number of units of
type ilproduced and C; is the production cost per unit, then C; can be appro-
x%mated by a linear function di tesX: where ei is a negative value, and the
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cost function = Cy X; = = (di + eixi) Xs becomes a concave function.
: t
i

Similarly, in a competitive situation where an enterprise does not dominate
the market place and greater production does not significantly alterprise,
then, because of economies of scale; maximizing profits involve.maximizing

a convex function.

It is well known that any local maximum of a concave function
over a closed convex set is also the global maximum. In such a case, that
is, a local optimum is also a global optimum, we are not faced with a problem

in global optimization. On the other hand, if it is desired to minimize



(maximize) instead of maximize (minimize) the concave (convex) function over
a convex set, then the problem may have distinct local qptima different from
the global one, and we are facing the problem of extracting the global opti-
mum out. of the local onmes. In fac#, for any pair myn, with m 707 3, oné
can exhibit n-dimensional problem of a quadratic function and a convex poly-
hedron for which there are exactly m extreme points all being lbcal thima.
The problem is less complicated if the convex set is a polyhedron, for tﬁe
global and local minimum points of a concave function over a convex ﬁolyﬁedron
are taken on at_ong or more of itsﬁextreme points. However; coﬁputéfioﬁai
procedures so far deve;oped, in general)lead to a solufion which is only a

’ T S
local optimum. For example, it would not be.possible to use the familiar
computational techniques of the simplex type, i.e., based on moving froﬁ one
extreme point to_gn’adjacent oneysince they terminate once a local extremé
point-optimum is reached. Moreover, it is usually not possible to determine
whether or not the local solutionAso obtained is really a‘globél'oﬁtimum.’
vaen if this could be done, no computafional algorithm has a way of proceed-
ing from a local optimum to a global optimum, ®f course, this is not fheAéase
fér fhe4linear pfogramming problems, where the simplex method arrives at a

solution which is not 6niy a local but also a global optimum.

The first methods for minimizing a concave function over a béun&ed
convex polyhedron have been described in 1964 by Tui (6). His approachlto
the.gldbalvéptimum'was based on the idea of sequentially replacing the ﬁ@o- )
blem by éubprobléms. Zwart gave a three dimensional example in which tﬁe
’ sédﬁénce of sﬁbprbbiems begins tolrepeat itself and never ends in the T;i's

b

apérbéch (7). Tui's idea then has been used by some others (see, e.g,u;2).
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Ritter (5) gave an algorithm for maximizing any quadratic function subject
to linear constraints; his approach based on a sequential reduction of th;
feasible region, but, Zwart showed that the reduced regions-do not approa;h
the empty set and Ritter's algorithm does not converge in general Candler'
and Townsley (2) have presented an approach to maximizing any quaaratic
function subject to linear constraints, but, it is heuristicrand does not:
possess the ability to recognize a global maximumg .krynski'(4) g
suggeét&ia method of finding a global minimum of a concave function over a
convex polyhedron. The method has a shape of branch-and bound technique ‘and
is only a theoretical proposal, The computational efficiency of Krynski's
method is poor for problems of‘even moderate size since a great number of

auxiliary problems,which have to be solvedymay be genevated-ln addition,

difficulties may arise in the case of degeneracy.

In this paper, an algorithm for maximizing a convex (concave) func-

s
.

tion over a convex polyhedron is presented. It is computationally finite,
g €

does not involve cycling,degenerate situations. and unbounded convex polyhe-
. C
dron are considered and treated simply, and all alternate (if there exists

more than one) global and local extreme point-optima are generated.

In section I some basic definitions and theorems dealing with con-
cave functions and convex sets are stated; section II contaips a brief pre-~
sen?ation of Zwart's approach to the problem; the method ané!a;gorithm are
described in Sections III and IV; and numerical experience appéars in Sec~

tion V.



I. Basic Definitions and -Theorems; . : . o ocratr s
Definition - : - o - : : , - ool oF

. The function F(x).is said to be concave (convex) over a convexset-

X in the n-dimensional space R if for any two points'uxifand X, in )&_,, e
F(Nx, + (1-0)%, ) 5 () NFEX, ) + (1= N) F (X )y '

forall 0&£ N X 1.
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F(X) is called strictly concave (convex) if the previous relation holds as a_

strict inequality.

Definition
A function F(x) has a global minimum at a point X, of a set X if

F(X, ) <K F(x) for all x in i.

Definition
A function F(X) has a iocalaminimﬁﬁ at a point’xo of a set X if there
exists a positive number € such théf F(x° 5<§P(X) for all x in X at ﬁﬂ%éﬁxﬁ}
xe - x]]. < €. - /
ofrcourSe, a global minimum is aiso a local minimum, but, the reverse is

R ey
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not true.

Definition
The extreme point X° of a'cdnvex‘polyhedroﬁyx is called a globéi o

extreme point-minimum point of F(x) if F(x° ) £ F(x) for any extreme point "

) yedimesk
x of X.

W S:C;; T
Definition

The extreme point x® of X is called a local extreme point-minimum

point if F(x° ) £ F(x) for any extreme point x of X neighbor to x°.
S



Definition
The function F(x) has alternate global minimum points if there exist
two or more different points of X where the global unique value of F(x) is

taken on.

Definition
The convex hull of a set of points S is the set of all convex combina-
tions of sets of points from S.

For example, the convex polyhedroh X is the convex hull of its extreme points.

A set of vectors S is called a cone if for every vector v in S, AV

is in S where N > o

The cone always contains the origin since ?xcan equal zero.

Theorem (1)
If F(x) is concave on a convex set X, then F(x) has at most one

local maximum which is a global maximum too and is attained on X.

Theovem (2)*

If the global minimum (maximum) of a concave (convex) function F(x)
over a convex polyhedron X is finite, then the global minimum (maximum) is
taken on at one (or more in case of alternate optima) of the extreme points
of X. If F(x) has alternate global optima, then the set of points in X at
which F(x) takes on its global value is the convex combinations of the alter-

nate global points.

¥ Tor the proof of this theorem see: Hadley ~.: Nonlinear
and Dynamic programming. Addison wes]ey Publishing Company, INC.
A (1964). P. 83 - 93. '



11. Zwart's Approach (8):

- Zwart has presehted an algorithm for tﬁe g]oba1-max1mization of a con-
vex function subject to Tlinear inequality constraints. A brief discussion of
his approach presented in th{§2Section. I have qposen Zwart's method for dis-
cussion since it does not involve cycling and it {%-cnmnutationa11y finite in
the following sense*\.for any prechosen € 70, a point Z is found in a finite
number of steps. It x is any feasible point, then there exists a pownt y (x)
such that F (y(x) ) < F(Z) and |1x-y(x ll<(e
Finiteness has not been proved for the case @ = 0.

The problem is to find x in order to

maximize F(x), subject to Ax < d,

where A is an mxn real matrix, x and d are column vectors of n and m elements
and F(x) is a convex function. It is required to find the global maximum
point. It is assumed that the convex po]yhedron
X = {_ X € Rn: Ax £ dy,x =0 } , 15 bounded. The method starts by
finding an extreme point Zj of x which is a Tocal maximum for F.
An increasing sequence of compact regions; R,.,, i = 1, 2, ... is construc-

Jd
ted such that

mx { F(x)§ = (), xERy . (1)

Rji can be constructed as the convex hull of Zj and ei, L), 820 1§, Bany

where e!

are points found by searching along the adjacent extreme point

lines for points that have the same objective value as Zj. Pfagnes Rji for
some i, then Zj is a global maximum point. On the other hand, a point X of

X and notcof Rji is located. If F(X) < F(Zj), then a new set Rj1+1 that sat-
isfies (1) and contains X is constructed. Rj1+1 can be the convex hull of X
and Rji' If F(X) > F(Z,), then X is used as a starting point to locate Ziy1

a new candidate for the gToba] optimum.



This can be done by searching along the neighbor extreme point lines of

re

- .

X till one of the extreme points,Zj41,which has a better value of F,is found.

So Z.

54+ is a new best local maximum extreme point of X. The Whole process is

repeated by generating R ¢ in step j+1i. Computationél implementation

)
) (j+1)
of Zwart's approach requires a method for constructing the Rji's and a method

for finding points of X that are not in :; and are local maximum.

For constructing the convex sets Rji’ n one-dimensional searches
along the neighbor extreme point lines (from Zj) are carried out to locate
the points el , i=1, ..., n, for which F(ei) = F (Zj) ,
Theﬁ "i is constructéd as the convex hull of Zj and el.
So for problemé of large dimension, i.e., n is large,the search process may
take so long time and may be carried out to the farthest distance. Further-
more, for problems having a great ﬁumber of localoptima or of a global optimum
value close to some local poinﬁ;“tﬁéi?umber of Rji's becomesnumerous. In addi-
”tiéﬁ, if degeneraéy is encountered at any extreme point Zj’ it could be very
V'difficult to determine distinct points el, "
To obtain a new candidate for the giobal optimum, a number of linear
::p;pggamming problems has to be solved to find points of X that are not in

Rji»’ 5 =1, 2, ... Each Lp problem has the form:

Max a (el , €2 ..., e® ).X subject to ;

&£ Xe X and

a(el . e2 s eoes et . el . e3+1, cees € ).(x—el.)j}.q,

j =2, ... ntl,



Where af(e! ,i... e®) is the“unit 'vector that issuing from e' po;nts-t&ﬁwaﬁd“‘

and is perpendicular to the ﬁlan'e detérmined by e2 i, v, el ¢ oo ILEY R

ThlS Lp problem 1s solved to cbtaln a fea31ble p01nt'2 of X. This L

p01nt x 1s a startlng p01nt for searchlng along the nelghbor extreme polnt o

lines of X to flnd an extreme p01nt that has a better value of F, 1 e.,.a new

S (o

local maximum Zj+1‘ Each time a new constraint a (Zj+1j e& Y- ). X ’2;

a(Zj+i;e1'.;:{én)f'él'is’added to the constraints of the current Lp ‘problem .to

.3

construct a smaller Rjtlé‘ ’ - R

Vv Serly . . . . . e e e
- . N . - e - - R I B

Thus we can see that to locate a new local maxlmum a number of Lp s B

TS

must be solved to get feaSLble starting points. ~T_hese Lp problems need to
be stored by storing the les and keeping, track of the proper comblnatlon, B

Since the number of ei,skare,large_fop large size problems and the number\of

e
LR I

Lp' S grows as the number of local optlma 1ncreases, then the storage require-

L Taulsy

. ments’and computation time become critical for large size problems. In addi-
AEEES . L T e e TR , R S A

tion, the Zwart's method is finite'if'andhonly'if,the sequence_of‘zjfs %??ﬁ;Plte
and each yields a different value of F. So if there exist alternative global

or lodal maxima the method could habe“nofability:td'fecognize'the global maxi-
mum. In other words ‘the method ié;coﬂﬁutaticnally”finite'if”the'globélsaﬁtiﬁum
is significantly better than most of the other local°maxima;and'the icéal makima

have different values.



III. A Finite method for the global optimization problem

We are interested in identifying the global minimum of a concave func-
tion F(x) over the convex polyhedron X =ix c Rn: Ax £ 4, x7 0} .
The restriction of boundedness of X which is imposed by Zwart's method is not
required here in this method,i.e., X could be an unbounded set. The method is
based on the standard simplex technique and computationally finite. The follow-

ing procedure can be applied as well to the problem of maximizing a convex func-~

tion over X.

We initialize the method by any extreme point of X say, x° and gene-
rate all extreme points neighboring to x°. The local.optimility of x° is
tested by calculating the value of F at x© and all its neighboring extreme
points. If x° is a local minimum,i.e., F(x°) £ F(xl) for all i=1,2,...,n
where x?are the extreme points neighboring to x°/then non of xi could be a
local minimum (to see this assume that one of xi’s,say xj,is a local optimum,
then, P(xJ) must be < F(x®) which contradicts the assumption that x° is a
local minimum). Therefore; none of the points xi will be tested for local
optimality. On the other hand if F(x°) is not a local optimum then any of
xi may be a local mindmum and consequently each of xi i=1, ..., n should be
tested for local optimality. We continue the process by finding all new
extreme points which are neighbors to each of xi, 1{i=1, ..., n. The new
extreme points are tested for local optimality if necessary and the whole
process is repeated again. ik is clear that the process will come to bn

end in a finite number of steps since the number of the extreme points of X

is finite. In case of degeneracy all representations of the same degenerate
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- extreme point must be generated,for distinct new extreme points can'bg found
from the different representations. The number of different representations i; ;
finite since it is less than or equal to n times the number of. zero basi; varia-
bles. That is the degenerate cases have no effect on the finitedness of the?

“process. - , i

\

To'locate all extreme poinfs that neighbor any éxtreme’poiﬁt Xé; we éx-'
amine the nonbasib éoldmns of the simplex tableau correﬁponding to X° to specify
the new points. To ease the programming of the métﬁod we may inspect the nonba-
sic columns of the current simplex tableau in a systematic way.either from right

to left or from left to right.

The method can be represented by a reee 1ike structure as shown in the -

following'figure for a hypothetical example:
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The nodes of the tree represent different extreme points of X. The
1mmediate successors of a n ode are the distinct new extreme points which
neighbor that nede. The terminal nodes stand for extreme points which geher-
ate no new points. The subscript on a 1Npde refers to the simplex 1teratfon
at which the extreme point corresponding to that inpde is produced,if the non-
basic.columns are scanned from right to left, if the indicators of the new
extreme points are kept in order of their appearance, and if the last extreme
point found is always chec~n for the next iteration. The extreme points corr-
exponding to the nodes in circles are not needed to be examined for Tocal op-

timality since their immediate predecessors are local minima.

IV. The Algorithm and An Example:

Let the m tuples of unordered integers D<=(11112’-'41m)’ ! 5§ij £ om,

i=12 ceoym be the indices of the basic variables of an extreme point X. We
call ot the indicator of the point X. Two different extreme points X1 and X2

are neighbors if their indicators are different in exactly one component. The
algorithm is based on a book keepingYof two sets of vectors kept is a matrix U.
The dimension of\d is (m#) xqwhere r is an upp2r bound yfthe number of extreme

points of X. The formula used for r is.

himl sz [ n+l.1 n+m-~-|n+2 %
r = £ = 2 v
m \ m .

W is divided into two sections; the right section extends from the

r-th column to si—th column, and the left part extends from the 1-st column

* This formula is given in: McM ulden, p.: The maximum Numbers of faces of
a convex Polytope. Mathematika, 17(13%c). :



SETON

to S2 th column. We use the right part to keep the indicators of the extrem?%ﬁwﬁr
points which have been tested for local optimality and the left part to save %
the indicators of all new neighbors of elements in the right part. The eTem~ L
ents of the Teft part are chosen one by.one fo be tested for optimality and

to creéte the new neighbors if there remains any.. When the left part of MW

becomes empty, the right part will contain the indicators of all extreme poi-

nts of X.*

= T

FAS

The steps of the algorithm ge as follows:

Step 1: Start with an extreme point X0 of X and its 1nd1cator06]
Store o in the r-th column of W. Set sq=r-1 and 82=1

Step 2: Test the Tocal optimality of the current extreme point XO as
follows:

i) For each nonbasic column, determine the pivot row to con-
struct a neighbor indicator of bf). If the current nonbasic col-
umn is nonpositive move to the next one.
ii) Evaluate the values of the concave function for each neigh-:1 .

bor extreme point.

0

iii) Compare the value of F at X~ with the values calculated at

(ii) to find whether X0 is a local minimum or not.

Step 3: If XO is a local minimum, Print F X0) aﬁd the extreme point XO.

* See: Manas, M. - Nedoma, J.: Finding all vertices of a convex Polyhed-
ron. Numer. Math., 12, 11968).



Step 4:

Step 5:

if)

i)

IV)

Step 6:

Step 7:

Step 8:
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Store the value of F (X0) in the (m+1)-th location of thes’- col-
umn if X0 is a Tocal minimum if not stere the letter N.
Move from the first column on the left of the current‘simp1ex
tableau to the next column till the last one on the right to
create the indicators neighboring to ol :

If the inspected nonbasic column is nonpositive go to
the next column.

If Xo is degenerate create all the indicators neighboring -

to &L which associate with the degenerate basic variables.

If X0 is nondegenerate, determine the pivotal row of the
inspected column to construct the neighbor indicator of oL

If the¥e are no more columns to be examined, go to step
6.

15 :

If the indicators)created in step Eéﬁe)neither in the left nor
in the right section of W, then stors it (them) in the Sz-th
column (S) of W.
Set $,=5, + P, where P is the number of the new indicators st-
ored. \if 522; S1 terminate the program. The available stor-
age/of W not enough.
If X0 js a local minimum extreme point store the value zero in
the (m+1)-th location(S) of the column (S) of the new indicator

(S) stored in S ,otherwise,store the value one.

2

If 52=0 go to step ll'otherwise\go to step 9.
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Step 9: Pick the Sz—th indicator and compute it by cdyrrying out a
number of simplex iterations on the Xq-simplex tableau.

Move the Sz—th indicator to the Sl-th column. Set 82=Sz—1

and Sq = 81:2.
Step 10:  If the (m+l)-th:location of the (Sl+1)*co1umn has the value
zero go to step.5 and if it has the value one go to step 2.
Step I1: Pick the vlaues of the Tocal.optima from the (m+l)-th loca-
tions of the indicators stored in the right section of W.
Compare them with each others to identify the global mini-
mum vdlue.

Print the global minimum value and terminate the process.

A Worked Example:

Let us consider the following illustrative example:
Maximize
2
F (X %p1%5) = 2506 - 2)7 + (Xp-2)% + Xy

Subject to

4%+ X, + 3Ky 7 28

3%1 + x2 + 2x3 ;; 4

and Xi'z; 0, i=1 ,2,3 .

The function Z is convex in ( 0, + 00).

Using the artficial basis technique in the simplex method we get the

indicator = (1,5) and the initial tableau.
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X2 X3 X4
()
SERETAN Cx L 3 1 | 6
Yo 4 4 4
1 1 3
s -~ -~ | "
,:_‘:‘l,
By examining the nonbasic columns we find that 0% (2, 5 =(3 5) and

(\B\f'ﬁf;'v“

3 (1/4) are neighbor indicatars to ﬂ? Checking tne local opt1ma11ty of X0
= (X, ; Xg) = (6,14) we find that F () = 408 € (x,, %5) = 584, Thus X° is

not a local optimum. The initial contents of w is

2 3 1 ..... 1
5 5 4 ..... 5
1 1 1 ... N

The indicator) tree at this stage looks 1ike the following.
o

o, =
o, ZC25) D) 0(3 = (yy)

We choose the neighbor indicator q§=(1 4) and comput itf“E get

Xo X3 Xg
X1 1/3 2/3 -1/3] 4/3

Xa -1/3 1/3 3/4 56/3 e

)
h

The neighbo;s are (2,4), (3,4) and (1,5). Checking the Tocal optimality
of (Xl’ X4) we find that F(x1x4);= l§§,<ﬁF (x5 X) = 1045thus,(xy, x4) is not.

a 1oca1‘optimum. The current éontents of W and the structure of the indicator-

tree are as follows:-



2 1 5 = =
, F (X3, Xq) 106 <:!: (X3, XS) 112
X3, . 2 872 212 Therefore (X3, Xq) is not a Tocal = optimum.
X4 sl [ R 7 The current contents of W [
and the indicator-tree Took: as follows: o<d
2 3 {2 i Y I e |
e R 4 4 5
| S MR N N N o\ (%5) %, (3:5) \y)
We continue by computing (2,4) :
7ot L Uy A3,
i T
Since F ( << F(X , hence,
X2 2 3 -114 (XZ’ X4) is not a 1oca1 po1nt.
X4 1 1 10120

Since na new extreme points are generated from the last tableau, hence,
the contents of W and the tree form are as before. Computing (3,51, We get.

X X X
2 1 4

The point (X3, X5) is not a local optimum
X 4/3 4/3 1/3 8 ;> (
since F ( F X X S
X3 Ig8s a0l f300T2433| 12 5)

.....
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We compute (Xz, X5) we find:
" X3 X1 X4
Since F (X "XS) = 584:: is bigger than
X, 3 4 1124 : )2 : ) ( )
F(X , X)), and F(X_, X_) and F(X,, X,),
X, 1x 1 120 3° 5 1’7’5 2> "4
5 thus,

(Xz, XS) is a local optimum. Hence.the extreme point (Xl, x2, X3, Xgs Xg)
(0, 24, 0, 0, 20) is also a global optimum for it is a unique local maximum -
The final contents of W looksas:

2 3 2 3 1 1

5 5 4 4 4 51 o

584 N N N N N
In this example we get only one local optimum which is consequéntly

the global optimum. This example serves only to demonstrate the working

of the method, but needs not show its power.

V. Numerical Experience:

The previous algorithm has been programmed in FORTRAN:Efand used to
run a number of examples on the INTERDATA 7/32 computerlcomputing department,
Institute of National Planning. The largest problem solved was of 15 const-
raints and 10 variables. It tgfk about 31 minutes during which 12 local minima
were found. In the appendiz/ﬁg present the results of four teSt'examples; the
example of section IV which has been solved by hand and the following : -

-2X..)2
- Minimize F (Xl’ X2) _-(Xm2ka) 4 2X1 + X2 +1

X, +3
1 X2 + 1
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L - %< 2,

2X, - 5X,S1

<0,

Subject to X

: ~-X:l < 2X2

-2x 3x2\< -1

and X 0%, 7 0. , 4

In this example the function'Fv{S concave in RZ, so its global and
local optima-are located on the extreme points of the polyhedron X defined
by the previous constraints. 'The{ﬁ :xtreme points of X are.x1= (1, 0),
X% = (2,1),%3 = (3,1) and X* = (4,2). :

The function F takes ‘the value

Faxdy =L o F (x%) =1, F3) =1,  F(xY = 1.

Hence Xz,vxs’ x* are the optimum solutions.

= Minimize

F(X s X, Xg) = Fl(ixl)'#‘ FZ(X2)+ F3 (X3),

0 ifX =0
k=7, .
: -3%, if X, 70
3X 42 e .
Fo(Xs)=es —-2—.;;1@, if X, 70
= 1
Fa(X)= 32X,
. 1
Subject to 2X1 *X, - 2X3 £.6
X, + 2x2 - 2x3 <7
X1 - X, <1

and : Xl, Xz, x3 2; 0.
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The functions Fl, F2, and F3 are concave in
ip, + OD), thus their sum is so.
The extreme points are
K= (050,00, X = (1,0,0), X° = (7/3, 4/3, 0),
X = (5/3, 8/3, 0), and X5 = (0, 7/2, 0).
The va]ueSfo F at these points are
Fxl) = -2, F(x®) =-3, FO®) = 4/7, F(xh) = @ —%; ,
and F (%) = 5 7/9. | |
Hence X2 is the uniquelocal minimum which is consequently the global solution
with F() = - 3., : o

- “ﬁ°éfMaxﬁmizevF=25(X1 --2)2 +1(X2 _.2)2 + X3

Subject to
X1 + X2 - X3= 2,
7«4XZ ‘,X3 7 0,
*‘“ sz - X3 $ 4,

")1(.1: XZ’ X3 >/0.
The function in this example is convex, so its global maximum is taken
at one of the extreme points. This test degenerate problem generates 3 local optima
all have the same solutions but with different representations. In fact the dioo
degenerate solutions may have the same global value, but the different representa=.
tions:;of the same solution may indicate different economic meaning. Thus the deg-

enerate case is worthito be considered. In addition, many of the extremg points

can bemissed if not allcof the different represenatiétions be Created.
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APPENDIX

LOCAL QPT 5§3. 99924758
X 2 24. 00000000
X 9 20. 00000000
VALUE OF OLOBAL OPT
1LOCAL DPT. FOUND

=0. 58397927€+03

END OF PROO.

LOCAL OPT 1 1 00000000

X1 &. 60000600

X 3 1. 0000060LO

X 4 . 00000000

X 2 1. 00000400

LOCAL OPT 2 1 000005600

X 1 4. 00000000

X 6 1. 00000000

X 4 3. 00000000

X 2 2. 00000000

LOUCAL OPT 3 1. 00000000

X1 3. 00000000

X 6 2. 00000000

x5 0. 99999994

X a 1 00000000

VALUE OF GLOBAL OPT =0. 10000000E+O1
3LOCAL OPT FOUND

END OF PROG.

LOCA. OPT 3 -3 00000000
Xl 1. 00000000
X 4 4. 00000191

X 9 . & 00000191
VALUE OF GLOBAL UPT. ~0.29999997E+10

1LOCAL OPT. FOUND

END OF PROG

LOCAL OPT 1 4 00000000
X 1 2. 00000000

L 4 00000000

X 6 4. 00000000

X 7 0. 00000000

LOCAL OPT 2 4. 00000000
X 1 2. 00000000

X 5 4. 00000000

X 6 4. 00000000

X 3 0. 00000000

LOCAL OPT 3 100. 00000000
) &. 00000000

X 3 0. 00000286

X & 4. 00000284

x ? 8. 00000000

LOCAL OFT 4 8. 60001526
I 4. 00000381

X 1 2. 00000095

X 3 4. 00000000

X7 12. 060001049

LOCAL OPT 3 3. 99999419
X a 0. 00000095

X 1 a. 00000095

X & 4. 00000000

X 5 4. 00000381 .
VALUE OF GLOBAL OPT. =0. 10000000E+03 .

SLOCAL OPT. FOUND

END OF PROG



