ARAB REPUBLIC OF EGYPT |

THE INSTITUTE OF
NATIONAL PLANNING

Memo No. 1266

The Generation of all Efficient Extreme

points for a multiple objective

Linear Program

By

Dr. Amani Omar

June 1980




IHTRODUCTION

It has freountly been arqued that the traditional dpproximation pf

mq]tiple cools of the decision models by a sinnle criterion is either 1n%~

- - pprapriate or fhtorréctx In reality, cecisicon situation is charactérized

by a series ef conflicting goals. ahd it miaht be an 1mbossible task to tie
all nonals into 2 sinrle unifyinc trade-off function. Recently, the search

for a discovery of concepts, theories, tools, and salvinn aloorfthms appli-
cable to multiabjective linear programs has been continuing in order to

serve the decision-meking rrocesses.

The Tinear pregrammine ﬁrcblem invoivine multfp]e objective functiee
ons fnduces bubsfituation of 2 sinﬁle cbtimal solution by a set ¢f subopti--
mizations. The subortimization situction could be the.best possible values,
under the given conditions, for tha considered objective functions, or could
- be the full optimfzation of one (or more) objective in the expense of a
lower degree of attainment of the other objectives, or cther ccasiderations.
It might be worfhwhile to state the followine qucfation: |

Johh Yea dec wn " ... This multiple objcctive situation is certafe
nly no maximum proble., but a peculiar and disconczrtina mixtgre of §e§eral
confticting maximum problems.,. This kKind f problem is no - where dealt
with in classical mathemetics. “e emphasize at the risk of being pedantic
that this is no conditional maximum prcblem, ne nroblem of the calculus of

functional analysis, etc. ..."



a The efficient solution is consfdered as a technical interpretation
,'of;the;mOItiple'oﬁjectivé sftuation. In recent yepis; the theory of vector
function maximization problem has been developed, -especially in the direc-
ticn of alcorithmic dgvelopmentsv’ As a consequence, the charact erization‘
and determ1nat19n of the set of efficient solutions has become one of the
rmain targefé, Though the.interest in the description of the efficient

set has increased subsfantially. no satisfactory aTaorithms for generating
all efficienflsaiutions have bee found yet. Some of the algorithms for
1ecating efficiént solutions are presented in (Zeleny,f), and (Iser-

mann, 3 ).

e give herc a'ceﬁpqtational algorithm with some new features for
Jenerating a11 efficicnt extreme points for a multiple objective Vinear
procram. The algorithm seems to provide a computationally effective

qethod.

Notations, Definitions, and Basic Théorems

Let the linecar multinle 6bjecfive rrogranminne problom be in the
form
Faximize the vecter - volued
F(x)=(clx,c2x,...,e"x)
Subject to k
hx = d , | e (1)

and x)’ 0 R



where A is mxn coefficient matrix of rank m, n) m, d is a reauire-
ment m - column vector, and x is the m - column vectcr of variab'les, The
compon: ants of F (x) are the cbjectives that are to be maximized over the

cenvex polvnedren X = {x fAx=d x}) o}.

Let B denote the basic metrix Ef order m x m, the J-th column vector
of & will be'denoted by the.small letter aj , Let X = (xq, Xos ooy xk)‘ and
¥ = {y1s ¥2, ...s ¥} ) be twe vectors, then
(i) x)Y@xi ),y.., 1=1,2, ..., k
(ii);_, x)Yq::x., 2¥i» 1=21,2, ... . kand x g v
(1) x=Y@x =y 1oL 2, ...,k

tefinition 1 ‘
The point 7 & X is .alled efficient 'if thcre 1s no other X G X

such that F (x)) F (x) That is. there is noZ 154 > F ci X 4 for
J=1 Jd “d 1
anv1c{1g.. . ,r

Definition 2
He call xE X an alternative efficient solution to (I) if F (x) =

F (y), %)i and % is efficient.

Befinition 3

The efficient basic solution % is called cegenerate if one or more

¢f the tasic variables of x has tﬂe value zero.



Let x be an extreme point ( a basic feasible solution) of X.

Then corres ponding to each nonbasic column aj of A there exists a vector.

o (71 7% r.
Zj (Zj. ‘J’ coes ZJ )s wh?re

RIS i 1 1 1
2’=C B aj-¢,1%21,2, eesyroc_,=(C, ..., C is the
f B J J’ . 1 ’ ’ | B ( 3 Bm)

prices of the basic variebles of .x in the 1 - th objeétive funcfion. For

the bas{c columns Z;

=0, 121, ..., r. In addition, there associates to
vectcr of values of the r - orjective functions: .
| F=(f e ),

where f tt Ci ,» 1 = 1, e Ty,
J:& J j , a ”

Let E denote the sct of all efficient extreme points, and let @
be defined as

@ = min XBi RITR 0])where

J 1219 o.o_oi'm yij j )

(Y; o ..., Y. )=B "a,'a is a nonbasic column, and'x , x , cees
37 0 ey "7y i B2

1
J

Xe are the basic variables of x.
m

.Theorem 1 ' ‘
Let ee >0 (1). Then the extreme point 2¢ E if Zj\< 0, for any
nonbasic co]umn 8 (see zelényf)
| (1) 1If X is cfficient and Zj= 0 for any nonbasic
column, then introducinn the i - th colum aj
into the basis will lead to an alternative

efficient point ? .



Proof !f Z, =0, then the new values of the objective ﬂmctions Fﬂ F -

GJ j » and since & ¢ 0 then x#x.

Theorem 2 (Zeleny, 6) _

If any objective functfon f 1 =1, ..., r is.at 1ts unique maximum
value at the extreme point x. then x €E. In case a function has atternative
optimal solutions at x. then some of the alternate solutions may be noneffi-

cient.

Theorem 3 (Zeieny, 6)
Solve the problem:
1aximize V = 1{:1’ v
Subject to Ax = d - Ci X - \/1 BC‘Y ees) (ID,
1=1,2,..., r,
XD 0 and v ., 0.
ThenTé E if and only if Wax V)O andX € E if and only ifYax
V=0. .
Theorem 3 Can be used to check the efficiency of an ext'reme point ofx
To illustirate the dpplication of this theorem. we analyize the simplex table-

—dy

aux assocfated with the constructef‘ problem (Tf) Let use define the fp”ow‘fng

symbols: ‘ '
C-(rzn)- matrix of coefficients of the p ebjectives. |



Bk - (mxm) basic matrix at the k - th simplex step.

X “- n - vactor of variables -

CB _ {r x m) matrix, of the prices in the objective functions, cdrrespoi-
to basic vectors in Bk. '

I - identity matrix ( of proner order).

.

= Zoro, matpipamit (6 VeSO UL I HR K

- For the original problem (I), the simplex tahleau correspondind tc

the extreme point X is given by:

— Table (1) .
- o { '
() frantail iy N
gt ! ek
= Tl [E
2 Rt e s g -1
B.k. As.csC.B ya LB
N Bk 1= Bk d

A

Part (2) consists of r rows each corresponds to one of the chjective

=1 8 4 ; .
functions, C B "d are the values of the objective functions at X, i.e
SRRk g

1)
CB Qd' Che |

For the constructed problem ( IT ) with the-nppeﬁded constraints

i : , :
C X=-v +4w = Ci X, where w are the artificial variables added, the
i i : 3 W i :
initial simplex tableau takes, the form:
Table (2)
-.f’\ I ' 0 0 d j
.......... e 2 T b oot 1 540 RN [CERR 10 ") R (RO e
C 1 St I
oY roxn. Pl B rxp. L cY.
== 0] 0 0 0
rxm pPxXr e 4R o Pl
s 4




- ,.corresponding to X and its'Basis Bk,,table (2) "has the form

L

C ~ Table (3) : .
-1 =1 o B |
(3)] 8™ & o I > o 8 d
, k k ' mxr ' mxr, k
dadedadedd “'""“'"'l"""".“i"r" hadndadd """ n
(2)] ¢ ela+ctc &7l 1 ¥ 1 ' o
LBk b8k o Pxr o rxryorxl..
-1 NS T | -1
(5)] ¢ 8 hr-cic B8, 0O | 0 ¢ 8 d
- B Kk - 'B k rxer rxr! B k _|
} ) . | i 1
The right hand corner of part (%) equal zero becz(mse)cB 8; da=CYX
i-m
Comparing parts (4) and-(5). -it s clear that Vg = - hj for i =

m+1l, ..., m+randJ is an 1ndex of a nonbasic columm .Since the values
nf Zj(i - m) are the components of the rows of the objective functions for
the point R’ then yij' can be found directly without reca1cu1at1ng the

tatleau. Thus the constructed nrob]en can be 1nitiated by replacing rows

(5) of table (3) with a new criterial rows ( 0 -1
lxm lxvr 1 X r ),
Removing the artificial variables olxn from the basis, we get:
- Table (2) g -
[~ el .
8-1 4 B 0 0 g8-ld
k oLk , mxr mxr k
(6) ] ¢ e ln-c ¢t I -1 0
) B k B k- rXxr rxr rxl
1 @ e @l o I 0
L txr B k 1xr B k 1xr C1lxr

artifical columns, can
be omitted




' 'I'he,"l'a;st' row of tab]’e. (4) is simpty the sum of the r rows of the
obj_ectives. Yhis row can be used to check optimality of problem (TI) as wel
as the efficiency of the extreme point presented by the tableau. If there
- 1s a nzgative element in the last row, say the j - th, and all elements of
the j - th cclumn in rows (6) are negative, then for r Y 0 Max V > o and

the corresnonding extreme point X f E.

How, we present the technique used to enumerate the efficient extreme
points  of problem ( I+) ,
A Method for Generating all Efficient Extreme Points

Clearly, the set E is a subset of the set of all extreme:points of X,
Since the latter set is finite, then consequcntly the number of efficient
extreme points is finite too. Thus, it is possible to construct a method
which can find such points. Here, we propose to give a computationally
feasible procedure .based on the standard simplex method which generates all
efficient extreme points. o | | |
Let Hq = (x €Rn: X = (xl. xz, , xn) is an extreme point of X
| and X =0), :
be the q hyperplane in the n - dimensional space Rn, q €(1, 2, ... n),.
e start the methcd by exploring aﬁ the efficient ex'treme points (if thgre
is aq:1y) which 1ie on the facet Hr1" X. After the registeration of all such .
points, we dibp the hyperplane “rg and continue §éarching for efficiént points
that may 6xigt on the facut Hpg N X o of the convex polyhedron Zz and not on-



Hr n i’ At the k-th stage, we would drop the hyperplanes "rl' H 2. cees
1.

Hp s and search for efficient extreme points that may lie on the facet

H nX and not on Hp n X or H_ nY,...,orHr n X k-1. The convex
Tk 1 2 72 k1 _

| polynedron'X;; where 1 ¢ k € m, 1s decribed by :

gl 2 x, - di’ for ql‘Tfi F1s oo ..'., r o,

k-1

2,0, jgr,r, ... S
AL ASTRPY 1, o

The process will come tc an end in a finite number of steps since
it must term1nate when m of the hyperplanas are dropped. i e, all required

paints will be f00nd when at most hyperplanes are examined;_

The previous idea can be applied by imptemening thé following

gencral rules: :

Assume that We arg in the k - th stace ; then:

1) - Arbitrarly, we chosse cne of the nonbasic variables, say, er énd we
keep it in thé nonbasic set throughout the current stage.

2) Me examine.all the extreme points of Y' and discard_those which are
not efficient.

3) Ue insert x;k Into the basic set (if it is not possible, 1. e, sll
compqnents of the xrk- column are zeros, then all extre@e ssints'have
been found, see (0MAR , 5 ) ) and we hold it in the basic set

till the"end of the process.
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4) Ye pick another nenbasic variable X . , hold it in the nonbasic set,
: +

and then transfer to the next stage continuing from rule (2).
o To carry out rule (2), we apply two methods, one for locating all
extreme points of the convex polyhedra X%, 1< kg m, and the other for

. establishing the efficiency of each extreme point.

The general simplex tableau for the multisbjective problem (I)

will be constructed as:

Table (5)
nbasic
bastovars.] M1 Xyg +oe *iin-m,
Y
%, | m 12 C Meem | G
, rg 21 22 2(n-m) 2
- X; Hopivots in k-th stage !
k-1 : .
x '.
il .
J2 .
X , A
xi y Ym2 m(n-m) d
m-k+1 1 m2 . m
1 1 ~1
£l 4 z Lo |
£2 Zi Zg zzn_m rZ
. Y I Fy
£ 7" 7" l £
1 2 n-m .
F Zr+1 ¥l - S+ | 2 Composite
1 2 n-m Function




lvrlzl.-

The last row represents the composite function ?:1 c X which is
" used to check the efficiency of the current solution. le’ N2s aee XN
represent the nonbasic variables. Let us assume that all efficient extreme

points of X that m HeonH nX, H, nX vees and H,  nY  have
v " rp ! kel kel

2lready been generated and thus the .convex polyhedron X is left,

_ That is, the variables Xri, . . are holded in the basic set
How, we are in the process of findinc the efficient points of X' which

my lie on the hyrerplane Hrk. i.e, al efficient points of X' for which
ka 0. "e call X & satisfactory point if it is an extreme point of X'

and not of X. e call the m-k+l- tuples of the unordered integers ('

10 150 IS k+1), 1 € (1 2, ..;. n), the indicator v of the extreme

}

peint X.

' ' 0
He Start the k-th stage by a. satisfactony point X of 7' we put the

indicator VO

the X k- column, of the simplex tableau corresponding to 9 we can fdentify

of x0 in a set R, By 1nspectinq every nonbasic column, except

0
all neighbor indicators of V. In the k-th stage. we locate the extreme
pcints of X lying on H' but not on Hp o H. s «ooy 0Py H | thus , the
= k 1 "2 k-

elements lying in the basic rows Xri. i=1,2, ..., k-1, must be holded
as basic variables, i.e, the restrictions X”> 0 are {gnored. We put in
a set ¥ all tie new neighbor indicators {- (9) of 9. lle choose an
arbitrary element y’ from 1! and compute it, 1. e, compute the satisfactory

solution Xicorresponding to V1 We check x’ for efficiency and out put -



it directly if it is efficient. Then we identify the new neighbors of Vi

and put R=vly g‘and ¥e ('(9) v r(v’) - R.
We pick ancther element from ¢ and repeat the same process. At the
~ s-th iteration we will have the two sets '

Red viandyed r(v)-R
i=0 i=0

The process will terminate when the set u = qﬂ? It holds that :
if w =®then R = the indicators of all extreme points of X' (see ‘i ).
It is assentjal to consider the following cases:

(1) Yhile construé%ing the neighboring indicators, if a tie occurs between
some basig varfables then all alternative basic variables must be |
considefed in constructing the new neighbor indicators. Also, if
some basic varigbles have zero valuesv( a degenerate case ), then'
each must be gpb;en in.forming a neighbor idicator as soon as the

| corresponding e]ement in the inspected column is nonzero.

(ii) If the clements of any of the currently investigated column are
nonpoitive, then we leave it and move to the next column.

Althouch, we dc not cbtain a new extremé point ‘in the degenerate
case, it is éssential to create all di%ferent representations of the
same degcenérate solution because some may lead to new point$ in the

subsequent steps. 4
It remains to present the techorique used to discard the extreme points

which are not efficient.
e first check whethcr any of the objective functions, including the

composite function, is at its maximum value at the current solution xI, 1f

at least one objegtive is uniquely meximize< by x‘, then xijfE. On the -
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other hand, if ZJ< 0 for at 'least one nonbasic colum and OJ > 0, this
assures that x f E. However, if 2 $ 0 for an nonbasic columns, then we
have to establish the effvciency of the current solution.. In this case we
perform a number of simplex iterations on the criterfal part, which is
framed 1n tgble (5), of the stmplex tableau. Each 1teratfon 1s carried
out with the largest positfve coefficient to be the pivot element, of the
nonbas{c column having the most negative V in the (r+1)-th criterial
row, If 63 = 0, we add the rows giving Bj = 0 to the eriterial part and
explore them after each 'H:eration for ‘any y J) 0. If there is y J) 9,
then Ojue and we perform the next 1teration -around y rj* After a number
of simplex iterations, one of the fbllowing two situations may occur:
(1) An coefficients of the (r+1) - th composite row are nonnegative,
thus in this-.case max V=0 and X €E, |
(¥1) *There is a negatwve element Z for which ;js;ozand aj > 0, thus,

in this case X' £ E.

Now we give a computational algorithm for the previous method. .

Let S be an array of dimension mxu, where_u 1s an upper bound of
the number of extreme points of a convex polyhedron of dimension n-m-1,
He divide S into two parts; the right part extends from the U-th column
to S ; ~th column, and the left part extends from the 1-st column to Sz-th
column. e consider the most Teft nonbasic column of any simplex tableau

as the X k- column. ( any other column can be considered ).
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Step 1 . Start with an inftal extreme point X° of X and {ts indicator V°.

. set k= 1,

step 2. Store V° in the u-th column of S. Set Slﬂu-l and Sy = 1
Step 3 Check the efficiency of x as foilous'

(1)

(#4)

(i1i)

If Zi’= (Z .. Z;. eres’ )) 0 for any 1€ (1, 2, 440y 1),

then Xc € E and hence cut put - x NI .

J
and "j » 0, then X is a nonefficient extreme point.

i .
If (Zj' Ly ooy Ly ) < 0 for any nonbasic jc(l 2, ....n-m)

If conditions (1) and (i1) are not satisfied then perform- a

number of simplex. ilerations on the criterial part of the

-simpiex tableau. as foliows

[ 4
. Choose the column associated with the most neqative .

N .

element Z i:o be the pivot column.

- Perform the simplex operations with the iargest positive

element, say, Zi., i€ (1,2, .0, r), to be the pivot
element. T : .

- If 0=0, add the corresponding rows to the criterial
part, and perform the simplex iteration with -qu as d
pivot element if yqj) 0. ( The g - row is the one

corresponding to the degenerate variable).

. After a number of iterations. either a'll c¢ . ponents

2';1, cass ZN_ will be ndnnegative and SO X ¢€, out-

n-m

put x®; or there is an’ element Zj ( 0 for which all
2

coefficient Z;, Zj, cers Zj are nonpositive anc.in

this case ch E...



Step 4.

Sten G

Sten -

Alternately, by moving systematically from the second column cn the

left to thc right, inspect the nonbasic columns:

(i) If the last m-k;l elements of the inspected column are non-
positive, qo tc the next cclumn,

(14) If xC 1s degeneraié. create the neichboring indicater (S)
of Vc corresponding to each degenerate variable.

(i1) 1f x° is nondenenerate, determine the pivotal row of the
inspected column and create tﬁé neichbor indicator of Vc.
For (i1) an¢ (ii1) if the created indicator (s) is neither
fn the left mor the rizht nart of S, store the new indica+
tor {s) in the Sz-th column (s) of s. Set SZ= S2 +p,
whare » is the number of the new indicators stored. 6o to

the next cclumn.

(iv) If there is no more column to be examined, qu to step 5.

If S2 =0, nc to ster 7, otherwise, ¢o tc step 6.

If ot least one indicator was stored in S at ster 4, pick the 82-
th indicater and compute it by carring out one simplex {teration.
Fave the So= th indicator to the S1 - th column. Set S2 =5, -1
and S1 = 51 - 1. €n tu step 3.

If nc new §ndicaters nove Leen stored in step 4, chouse frem the
Teft part of & thet indicator, say. the h-th indicator, which has
from vc the least listance. Compute it by carfing cut & number of
simplex iterations on the current tablesu. Move the h-th indicator
to the S1 - th column and the 52 - th indicator to the h - th

celumn, Set S =S -landS =S5 -1, 6o ts ster 3.
2 2 1 1
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. Step 7: If the last m - k+1 elements of the first column are zeros, terminate
© the process, other wise, 20 to step 8.
Step 8: Insert the 1sg column 1nto the .basis. The pivot element is chosen
from the entries of the last m-k+1 rows such that the new satisfa-
"~ ctory reoint Xc'mqst te an extreme rainf of X%-l’ i.e, in determing
the pivotal row, useuthe farmula: ‘
s = ma gi’_.l,yM)d;,ifthe
j=1, 2,:..., m-k+1 yijl J

~ last m-k+1 components are nonpositive, and the formula.

X
- _is = min 1 0) , if the
y j = 19 2s eecey m"k+1 {yi 1j >
sy ' h

last m-k+1 components are nonnegutlve.

Interchance the k-th row and the is - th rew in the :ew tableau.
Step 9: Set k = k+l. If k > m, terminate the process. If d (The current

values of the basic variables) 2, 0, qo to ster 3 J otherwise g0

to step 4.

fin_Example
Let us consider the followinn illustrative exémple:

Te find all efficient extreme points of the 1inear multiobjective
nrosram:

Hax f1 = - x1 - 2x2 - X3

a 2 3
fa X1 + xz + X3



subject to:

X. + + + X. =86
1 -%'xl 3 X 1

In the following sequance of tableaux, asterisks denote the pivot
elements which create new satfsfactdhy sclutions, and an arrow points to the
hyperplane cohsideréd in the current stane. 9n the riaht hand side, we
present th§ current contents of the set S. The compssite function

- F= X =X, is denoted by §= ...

1
Stage 1

The initial simplex tableau is :

i C
X, X, X3 4 s
X 1 3> 1 6
. N Ea - . -
. 2 4 ... 4

X, -1 1 3 14
f 1 2 -6
1 1
f- - - - 2
»' 2 1 1 12

: 1
This extreme point X = (6, 0, 0, 0, 14) is efficient hecause the
first objective functicn f1 is at its unique maximum. So print xl. Next

we introduce x3 inte the basic set to get



[
X X, Xs d
X1 2/3" 1 43 S
LA R / s Y
A= e 13 443 56/3
-3 T 2 2 ...0 8
£ 43 5/3  -4/3 -74/3 '
fl ; ’s . 5 3 ...35
> ;3, -2/ /3 92/3

Z -1 -1 P 6

Since no objective function is at its optimal v*lue, then we need

to establ'lsh the efficiency of this point, sc we proceed as follows:

f a3 §3 -1/ AR
fp <713 -2/3 ys = oo
1 1 0 3/4.

i
Since Z_ < 0 i=1,2 and 65> 0, then the extreme point

9
Xz = ()(2, )(29 X2, X As X ) = (0, 0, 56/3, ’/3 0) is not efficient we

1" 2
choose the neighbor (2,3) and compute it, So:
X, X, X
» S
X -
” 1/ 3/2 %__ 2 _
X - 1 -1 3/2 18 2 .o 2 4 &
3 2 2
1
f —_— -5/2 -1 =28 5 . 3 3 5
O
f -2 1 -1 32
2 ) h

32 -2 g




2302 -3 1 3
- L _

' 3
Cecause of the seeond column and E?n > 0, then X f £
“+ ¢

We continue by computing the indicater (2.5) -

¥ Y, 1
1 a 3
S
X gh 2 413 1 &
2 7~ 3 .
J.asd @ RgInivg
Xs 21 -1 2/3 12
3 &
..... 5 3 3 5
f,o13 -8/3 173 22 )
f. 5/3 4/3 -2/3 20
- -4 -1
3 3 kl
4§ 1"* - 079 /...
1 /3 /2 %_ fl 3 8 \ 1
f, -5/3 43 =2/3 3 f, 15 -35/3} 1
' 5 i
- ]
-2/3 A3 -l 4 2 f

X, q‘ E, because 6 >0 anc /'1 < 2. The left part cf S is empty,
Sy ; i &
thus stare 1 1s ended. e start stace 2 Ly €aleulating the indicatar (is B)
The variable Xl must be holded in the basic cet and the hyperplane X, =0

is invisticates in this stane.



X . x.2: x3
X 4 3 1 24
1 .
. . * L%

x - B

5 1 . 1 | 1 20
foan a1 0 -39
1 : o
f, & 5 1 €0

1 30

Y
~¥

3=

Print x5 = (24,0, 9,0, 20 ), sinée fz is at its unique maximum

value. e compute (1, 3), then:

X X X
2 5
X .3 2 14
1
1 20
X, 1 1
£ o0 -1 0 -30
1
£, 7 A S
3 3 110

Since Z;';g 9 and Eg 7 9, then the point is not efficient. ‘e

cempute (1,‘2), then:
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X X X
a 3 5
x1 1 -2 -3 -3 S
% 1 1 ) e 1 1 1
£, -3 1 1 -19 . 2 3 5
f, 3 ; -5 -0
) -3 3 -50

This point is not efﬂcicnt sice it 1s not an oxtreme point of X
the left part of S 1s empty, s¢ stage 2 is finished. The number of hyper

plane explered is two, thus all extreme points of X have been bound.



Computational Experfence

The algorithm has been coded in FORTRAN ¥ and used to run a number

‘of test problems on the INTERBATA 7/32 computer, Computing Departiment,
Institute of‘National Plannjngl_ The problems were of different sfzes. The
largest problem Solved was of’la constraints, 23 varfables; and 8 objective
functions. It took 5/5 Simplex 8 teps to find 104 efficient extreme points.

. The.cbmputiné time was 74 minutes. of course, the computing tine should be
oniy of relative valuye since it could bé changed ffqthe program is executed
on other models of computer#. Some of the test proBlems have been terminated
i,e;za});gffigigqgrpgingssare:f@und.fbefbre all the hypefpianes~are examined.

A testfng degéﬁefateipfbblém having 5 constraints, 10 variables, and H obje-
ctive functions gave to efficient points, one of them had been printed 3 tim-

es because of its degencracy (see appeh&ii).

I mention same of the difficulties which I have faced. First, since
the indicators of the extreme points are to be saved, so the determining
factor of the problem to be solved is the computer stovage capacity, The

space needed-for the set S is of dimension m X y, where

ne 2 n+3
.,“..-[-—-;J e 2]
U= +
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for a convex polyhedron in the n-dimen- Sfonal space. The formula used for
the upper bound u is given in ( ). This formula is not yet proved for
all Values of mand n but it gives considerably better results than the other
known formula. Since the proposed method investigates one of the polyedra
Hri n Z% at a time, that is, the space dimension is reduced by one, then the
storage area of S could be reduced by:

m X m+n-3

2m
n-1 2
locations.
m
However, although some of the testing problems theoritically required

a storage area vhich exceeds the ava11able core capacity, we could run most
of them without invoking auxiliary storage. This could be done by using the
value of U which fits the data into the main core and including a device into

the program which gives a warning message in case more storage locations are

required.

The second difficulty is introduced by the fact that many extreme
points, in case of lengthy problems, must be calculated so that round-off
errors may accumulate to the point where they obscure tre actual results.
This problem may be resolved it double precision arithmetic is used to

improve the accuracy.

Lamo

In the appendix the results of swe problems are presented.
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- OBJECTIVE FUNCTIONM
s 2 6. 00000000
X 3 14. 00000000
VALUES OF 0BJ. FUN.
-4. 00000000
12. 00000000
OBJECTIVE FUNCTION

OBJECTIVE FUNCTION

X 4 23. 99998474

X 3 19. 99998474

VALUES OF OBJ. FUN.
-29. 99998474
59. 99998474

. ——

1 AT ITS MAX VALUE

2 AT ITS MAX VALUE
'3 AT 1ITS MAX VALUE

NG. OF EFFICIENT PT.= 2NO.OF EXT.PTS.= 7NO. OF HYPERPLAN INVI

€MD OF PROGRAM



> X X X

NOCObW

2. 00000000
1. 00000000
0. 00000000
3. 00000000
1. 00000000

VALUES OF OBJ. FUN.

X 2 X XK X

0. 00000000
0. 00000000
G. 000060000
G. 00000000

NpadW

1. 00000000
0. 50000000
0. 99999994
0. 99999974
0. 00000006

VALUES OF 0BJ. FUN.

X X XX X

0. 99999994
0. 50000000
-0. 99999994
-0. 50000000

NRO AW

2. 00000000
1. 00000000
3. 00000000
0. 00000000
1. 00000000

VALUES OF 0OBJ. FUN.

> XX X X

0. 00000000
-0. 00000006
0. 00000000
0. 00000004

WO >

0. 50000000
1. 00000000
0. 25000000
1. 00000000
0. 50000000

VALUES OF OBJ. FUN.

;T D> I

VA

b S S N

2. 00000000
0. 74999994
~1. 00000000
-0. 99999994

0. 00000000
0. 49999976
1. 00000000
0. 99999994
1. 00000000

I_BC'PJU!-F-*

1..00000000
0. 50000000
-0. 79999994
-0 49999994

ALVES OF OBJ. FUN.

Wo DN~

0. 00000286
0. 97999974
1. 00000381
3. 00000000
1. 99999905

VALUES OF 0OBJ. FUN.

-3 00000095
G. 00000238
0. 00000006
0. 00000000

NO. OF EFFICIENT PT. =

&NO. OF EXT.PTS. =

1 1NO. OF HYPERPLAN INVISTIGATED=



eole s
TR I

DBJECTIVE FUNCTION 2 AT ITS MAX VALUE: - ~ov = T05%
.00000000' . . ) . : . ..‘vaﬁwm s
. 50000000
. 50000000 .
49999988 .
. 00000000 .~ ‘-
- 00000000 -

X 11 . 50000012 . - . v

X 12 ,99999905t3;ar1;,gfj R
© VALUES OF OB, ~FUN. Ll

=8.49999908 L. Lt T

'2.50000000 - o0 o -

%
15

R

o

A2

A .
A 10

m0wppm~w

-1. 00000000
LTO 0.0000006 % . 4
050000000 B , O e R
“OBJECTIVE FUNCTION. 3 AT.ITS MAX VALUE .
© OBJECTIVE FUNCTION 4 AT ITS MAX VALUE -
_'OBJECTIVE FUNCTION - 5 AT ITS MAX VALUE
" OBJECTIVE FUNCTION' & AT 115 max VALUEﬂ;?»}Qwaﬁ
"'. 1. 00000000. " e , . AR
). 00000000
60000000,
XHE 0 000000000
Xoen 4. 00000000
X 30 . 1. 00000000
R
X

11 0.50000000 -~ . e : , B
UE 0 2.99999905 0 PR I AT
VALU&Q OF OBJ. FUN. = . . -~ ~ SR
3. 00000000
ﬂzqoooooooo:-
5 00000000 .- L
4,000600000 0 b
r oqoooooo SO R
{QOOOOOOOz.fﬁ”f'
. 00000000 -
. 00000000 . .
00000000 . . O
. 00000006 - z
. 00000000 . S
. 50000000 < - . - . |
79999905
VnLJFb ‘OF OBY. FUN AR T
R ;3 ()()()()()C)()(), Do ;,97_{ T S, j_i;fxf.ﬁ”"‘
é_;2 oooooooo.iﬁifﬁe"‘hhTf* Sl
.5, 00000000 - .-
4. 00000000
1 63000000 .. i SR T T L
{deCTIVE FUNCTIDN Lo ATCITS MAX VALUE & 4 0 i T
..00000000 L T O U T
. 00000000 .,
. /00000000, ...
.°:00000000 " -’
00000000 - ..
4 200000000 .7 LT e T
1:A.; . 500000007
i@ . 99999905
VA[U&C OF G84J, FUN.
3 00003000 o . PR , , p T
200000600 .- . T LT

M

S > ¢ 3 e ,#:x
ﬂﬁb\iaq“
EIOya»cipcja

b b s
PJ Ll @ Bt

;aam\dw»«v_v

P
1
p

R
mqép0¢oé



- el et o A

4. OOOOQOOO ,

1 00000000 . e
OBJECTIVE FUNCTIDN
i *q,l 00000000

- "2,“?~g:0 00000000. .

X 7 T e OOOOOOOOFJ
=
9

4 AT ITS MAX-VALUE . .

-+ 0.00000000

" 4! 00000000 -

+:1,00000000:. .

0: 50000000 = ..

2:99999905 T
2 FUN el

.4, 00000000‘:

1 oooooooon

roooooooo

Loooooooo

&Qooooooo

- 00000000 -

. 00000000 "

. 00000000 .

. 50000000°

99999905

VALUES OF DBJ FUN. SR S R

2 omxmooo;:v, : ~ ' R e TR

..5.00000000 . T

s oooooooo;;ﬂyg_;a Cn

.. 1.00000000" . o S
SN OBJECTIVE FUNCTIDN 1 AT ITS MAX VALUE

"~ 1..00000000° - L R

e0ﬂ+hwé

1
1

mb&ﬁb}bb

X
X
X
X
X
X
X
X

1

) B » 00000000 :

7. .. 4 ,00000000. -

3 .. 0.,00000000. .

9. 4, OOOOOOGOv‘f Q?z,

0 HC % OOOOOOOOQEGﬁ‘“'.

1 0.50000000

X iz 2. 79999905

B VALth OF OBJ, FUN.'

: 3. 80000000 - .

. 00000000

. 00000000 -

00000000,

00000000 '

. OBJECTIVE FUNLTIDN 3 AT 175 MaX VaLus .
. OBJECTIVE . FUNCTION 5 AT 14 rAax VALUE
OLJ:CTIVE ruNCTIuN o AT T MAN VALUE

:Fr%tnnzw

B Y 1 4 AL,



7. 4.00000000
C 3 UT0..00000000
9. . 4.-00000000
, 1. 00000000
.Ilﬂ:“‘5 0. 50000000 -
ta 2. 99999905 -

x><>:x><>@
[y
O

VALUES OF ‘OBYJ. FON~,,,,fff;'ff. L

00000000-‘
.. 00000000~

OOOOOOOOf
1. 00000000
'f§%00000000

~~"0 uooooooo
. 4.00000000 .
'1./00000000
- 0. 50000000
2. 99999905

X 1”.@,

i""ahkl'i
> O O
23
¥ O
Bl
x

OuOOOOOO

", BBYECTIVE FUNCTION - -
«;&OBJECTIVE FUNCTIBN;{
». OBJECTIVE FUNGTION" .
'”OBJECTIVE FUNCTION .
' OBJECTIVE FUNCTIDN}':
vl 00000000 .. e

.£0000000

 4..00000000 -
d. 60000000
4.
1.

SRR

OJOOOOOQ
: 00000000
il 0.50000000
2.-9999990%
OF GBJ. FUN.
, O0I000
Ll 000000
O OUO0000
400600000
5 '.'L::")(; OHC00

A NP o S, N
R e

VAL UES

OO0

JuJECTIVE ~UNCTIDN _
- OBJUECTIVE -FUNCTION.
 UBJECTIVE. FUNCTION»*~
OBJECTIVE. FUNCTION -
GBJECTIVE FUNCTIDN )

1.:00000000
owQQQQQQQQ
* 0. T0000000

"fr} LY (R e

L;p 1. 00600600
11 o, 50000000

1n . 299995505 .

A UE. = '.JF U-’k\.’ } FuN
3. 00000000
00000000
L0920 05090

¥, f "‘HJJO'\JO;

H S5OWNTIT D)

; 00000000¢ii{3ﬁﬁ<];f PRSES
£ 00000006 © :

:AT rTq MAX ' S
AT+ ITS . MAX WA
AT TTS MAX VA
CATCITS MAX.
AT 1TSS MAX

~ﬁ&tn§hn+;:3 e

AT 1rd:maz VALUE

AT ITS MAX . VALUE o
~AT~1T8‘M5x;vALUE,"“"y
AT ITE riAX VALUE & o -
.AT.IT8 N9X‘VALUE» S o

‘mm'.tsu..-

4. 00000000 i
o g, 00000000



END DF' PRGGRAM
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