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ABSTRACT

This‘paper discusses some problems of mﬁitiple objective line-
ar programming /MOLP/ solving and MOLP Optimal solutlons finding.
MOLP model is formulated as in /8/. | '

After concise MOLP historical review tﬁeApboblem'definition and
optimal solutions finding, in relation to information on objective

Cf fetepaation
functions, is presented in section 2., The div1sion s performed as
follows: | ' ' |
I < Minimal levels for goals are assumed;' 
II- Goals hierarchy is present, | .
given and

III-Utility function isfcalculated
In section 3 MOLP problem without goals hierarchy is dealt with.
As its optimal solutions one tekes fhese, satisfyiﬁg'so called

"Pareto Optimum", i,e, efficient solutions. Some basic properties
ﬂﬂwMOms - S

of efficient /Set are presented.

Section 4 is devoted to the problem of comprbmise solutions,

which are generated , when set Ei,is too big; To_&o so, optimal
solutions of problems a/ /16/, b/ [21/ = [22/, ¢/ [23/ - [24/,
d/ /25/ - /26/ can be used. Some of these problems are developed
by the author, the others are constructed on the basis of recently
published research. S

Solution procedure  of problem /27/, proposed by M. Zeleny, which

generates compromise set is discussed in the last section.



1. INTRODUCTION o DT

LIt is well known that guite frequently the decision taken |
‘is not evaluated on the basis of single value, but on the basis N
of several values, belonging to the set of indioes. Then, we a’_
‘have multiple indices or multicriteria evaluation of a decision.
_ Single valued evaluation is usually narrow quality description."
Multiple indices evaluation enables to perfonm more complex
characterisation and also decision making in modern economy is
carried out by several goals achievement.;n; |
It is interesting that multiple criteria decision making was
discussed simultaneously with quantity tormulation of economy
theory. V. Pareto introduced in 1896 [12] the notion of optimal
decision with respect to several criteria,_widely known as "Pa-
reto optimum" During the early years of linear programming -theor;
T.C.Koopmans [9,] and H, W, Kuhn, .W.Tucker [10]referred to the
problem of optimal solutions finding in multicriteria mathemati-
cal programming models. L i _“ L v'
One can say that a 51gnificant research on optimal solutions
and its definition in linear programming models with several ob-
~ Jective functions was started in 1965. This time, a problem was
_called multiple objective linear programming /MOLP/ or multicri-
‘teria linear programming problem. L , f _
It should be stressed that first multiple criteria LP for-
mulation can be encountered in [ﬁ ] where A. Charnes and W,

Cuoper formulated a goal programming problem.;_.w;fo-"“
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Feasible decisions set X 1is given by the fdlioviing cons-
traints: .
Ax =b (b> O)

XZ(D))xéQn K

where matrix A] has dimensions m x n.
Each decision x&2€ has to satisfy t different goals, where
goals satisfaction by ¥ are measured By linear functions.

f0) = ¢y x ‘ /1= eaa,tl, 12/

Value d; /1 =1, ..., t/ of a required accomplishment is
assigned to every goal, ' A

In goal programming we look fof ‘the optimal solution of
the prob%em ' . :
Mn{épa\QLy-g\,L‘\ye},}>» /3/
where P; are deviations comparabil’ity coefficients,
It is known that for p; >0 problem / 3/ can be formulated

as a corresponding LP problem:

Loyl v i) = wim ad

S.te B
Ax =b
Cx-y'+y =4 B
- x 20, y/f>/O, )y.'Z(D)

where

¢ 4 2kl g
C=10 )y = i y= ]y
BEs

Problem /3/ solving gets complicated when different /p‘I/

values are assumed for "above' d; deviations.and different
/®;/ for *below"d; deviations. In such a
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case ‘substitution of /3/ by problem. /4/ - /5/ is possible I 5]
if pj- )/-pi /i s 1, seey t/

Assumption of a specific goals achievement levels is one
among different approaches to multiple criteria decision ma-
king, It is usually performed by the inclusion of some inequa-

Qefinition of
lities to /Eh@ Teasible decisions set, and not as in /3/ by the
inclusion of additional information to the- objective functions.

Ve shall discuss this problem :mrther on..

2, Formulation of MOLP problem and :l.ts properties.

2.1, Formulating MOLP problem we assume:

1° - The set X of feaaible decisions deﬁned by constraints
/1 [/ is bounded;" _
- Every decision xe 36 is evaluated on the grounds of t
different goals by the vector - function /2/ ;

F)= Cx. /61

3 - In a decision making process ve want to maximize every

£i(x J separately on the feasible set X, so

= - 11/
1€t x2eDE 6L&€_W{£‘»‘*63€}‘ML !

and x? is an absolute optimal solution for goal "i",
Taking into account the assunptions 1° = 3° we shall de-
fine MOLP problem as: ‘ a o |
e { F(x) w6 X} /el

Function F /x/ is a linear mapping of ®" space into Rt ‘

and because £ CR™ and (X) {F()k)\)S(é%} C R

so R? - decision space,

rt - criteria space.
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Linear mapping guarantees that
a/ if X is a convex polyhedron, than F /}5/ is also a

convex polyhedron;
'b]\cn.varae-image of F /X/ vertex is at least one vertex of

the ‘set 36
In single - objective LP, which is a special case of MOLP,
for every two decisions —héfonging to X ’ the following in=-
equalities, ordering their performanoe, hold:

B/ %, /3 ¥/ 2/ or F/x/<F/m,./ .

In MOLP problem it has not 4o ‘sccur /see fig 1a, 1b/ what
implies serious difficulties ‘with-the deﬁnition of ~optimal
solution in problem /8/. As we shall see, all the approaches
- will be to a certain extend based on a single oriteria opti-
- mization, '
~ Optimal solution definition largely depends on information
~.concarning problem /8/ objective functions, which we ‘have on

o hand. We distinguish four kinds of such 1nformation. '

. 1/ minimal levels of goals satisfaction are assumed,

I1/ a strict goals’ h:l.erarchy is present,

111/ an utility mnotion u/F/, repreoenting all the goals
is defined on set F/.X,/ ’ | I

. 1IV/ all problem /8/ goals are ‘equally :!.mportant.

: 2 2, Usually information on minimal goal performance are

linked with one of the remain:l.ng groups of inrormation and

‘are included in set %%ﬁ?quauties '

Cx > d

Let us denote.

T | Cx > d %2 0] .
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Now we consider when Tﬂ :)6 = O’ . In this case pro- ‘
blem /8/ should be replaced by searching for ,such X X )
which has possibly “'the best" location with respect to.
/see f:l.g.z/q When J N X =F @, problem /8/ is consistent,
and. its optima;l. solution is defined 1n relation to other in—
formation on objective functions fi/ x'/ o 1 ,

We check for sets‘ J- o\m\. 35 J;s]uuction by solving Pt‘bblem

S' sl

4Ty e el
sete’ , ' ‘
» - N&r = b . :
(Cx(-7=cﬂ‘ . "5:(1:,0/
L x20 ,y>0.

Let ( x° y") denoteg optimal solu’cion of /9/ - /10/ .

~ Sets. To,.,d b are d;sjeant iff [1] y > 0.

R -_I:f Bets Twa\. 36 ‘are das:ozhi two. approaches are- possib1e1l
L A/ Unit loss weights pi resulting from not atteinlemehf of.’

required levels di are given. Then we are 1oold.ng for the
optimal solution of the problem
IVCUREE SR Pi i —> mn

N

s.t.
conditions /5/,

' . disjunction
B/ It is.’possible -to. overtake sets TWA. 3& M

chenging’\:b - part of b vector, ‘into \b + w> This change

n_‘-

implies costs: Kw . The’ amount “of ehange ean be nmited:

'-*'-*‘w?"\ ﬁ ’ the cost of change can be limited as well'

kw's ol e As 8 r_esult we solver

' ‘I.'Vl N

.B.to

“T/Here I UB€™ uome proposals presented by dy E.Konarzeweke et

P
v

seminar held -in Research Institute for.the Mana ement Organj-
zation and Development, Warsaw, in 1976. . &



[ Ax = w &b, 12/
R x = b, -
Cx > di

{.x<>/®,, O« ws P

If constraints /12/ are consistent and minlk w <o( , theﬂ
it is possible to use prbblem /8/ with feasrbie set defined
by constraints /12/ while computing final optimal solution,
2.3, Let the objective functions ordering represent existing
goais hierarchy, Then as an optimal sclutionAbffprdblem /8/
we take this one of the last problem, from consecutively sol-
ved "t" LP problenms, ’

max{a.&lxe%-} o (u 1,2,. : ’b) 13/
where .
X=X ;- {x\xex,_‘)ﬁ x> (- e\,-‘)M}
(v= 2/"'1&)

Mi«: W\M{L;X{\)ﬁé%;} (L:ﬂ)._../ -\)

0<§q1<.1 - feasible percentage deviation of f; functions epop

—

Mi value; value;ﬁdﬁn be different, The main disadventage of
this approach lies in the fact ‘that apart from goals hieran-'
chy, final optimal solutio:?be closer'to absolute optimpm of
last goals, than the first ones/see fig.3/

To avoid such situation it is possible to start the procedure
by solving auxiliary problem for first "s" objective functions

/8 < t/
v — min

Sete



Ax = | |
X(V)'\’ C.x Z(1‘V)Mu (L=1)-,.$)
. >0, O<vgi T

With optimal solution /x, ,v,/ the set ..%‘(v°)'c. X defines
an area, where every of s distinguished ob,jéctive_'ftmotiona va=-
ries from its absolute maximum less than ir“‘%. For some A v>0
we compute ;1-1 in set X = %(v + Av) and for i @ 8+1,...,t
" we use problem /13/, taking X =3, and . M -, M1 R
2 o, Utility function construotion is widely discussed in the 1ite-
rature, with an extensive survey given by Fishburn in [7] 80 we -
shall not describe it here,. Eb:istence o.t‘ a utility function
UlF /x/ ] enables to replace mnltiple criteria problem /8/ by
single criteria mathematical programming problem:

nax (WL FOO]|xe Y- Y
When utility function U[F /X /] is a linear function 2, /x/,

i.e.

U/x/ = ipi @ X .
than problem /14/ can be contracted to. LP problem. mo.x{(ipw) x:laex}
3, MOLP problem with equally important objective :t\mctions.,, ;

Every vector X e X satisfying Paveto optixmzm in reference to
objective function /2/ is taken as an optimal solution of pro=-
blem /8/. Because of assumptions 1°, 2° stated with problem /8/
definition, vector X satisfies Pareto optimum condition - and
is its efficient solution, iff * ' '

jx Fx) 2 F(*) | s/

LetZ denotes efficient solutions set of problem /8/

Obviously E C x _ '
The following theorems dealing with efficient solutions are

true /for proofs see for example (4], [16], [17]./
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Theorem 1

If X8 is the only optimal solition of problem /7/ ’ then X eE
If problem /7/ has an‘infinite number of optimal solutions, K

; 'bhen at least one is’ eff101ent,
Let E denotec basic efficient solutions set for problem /8/

Theorem 2 o
lIfE:F@/ thenzbmS a finite number of elements.

. Theorem 3

When se‘bE is bounded, every X€E E can be presented as- convex -
combination ‘of some elements from Zb . |

Theorem lr

3€ Eis a convex set.

Theorem 2 :
The feasible vector )5(636 is also efficient one(x(e E)

there exists such vector P (—, RY, that fP>0’ [1}‘?- 1-

Tgx—mw{ﬁ;(/&\&éx& | /16/

-

On tne besis ‘of theorem 3, M, Zeleny [1‘7] developed an efi‘ioient;'A
procedure for set E determination. It is two-stage algorithm,

In the first stage set f is generated by adequately ‘modified -
simplex me'bhod. In the second stage, sets of convex combinations
of ZB elements are created. The sum of these ‘sets’ defines 2

The other mod:.fioation of simplex me'thod /as a matter of fact
two modifioations/ is presented by Evans and Steuer L 5] [6 }
| It was programmed and is sucoessfully used in practice. 1 be-
lieve it completes the list of actually the most efficient

nrocedures of MOLP problems solving.

S

L2 S .
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Apart from the above, theorem 5 provides a theoretical
background for the application of multiparemetric LP to
generate efficient setzg M. Zeleny discusses thi's: appro-At
ach in [18] and its’ practical application is. possible for .
two objective functions. We shall discuss this approach .
further on, S ‘ : ' A

Observe the other meaning of theorem 5.,It Btates that
every efficient solution is an optimal solution for some ‘\
linear utility function. So, the set,of optimal weights
associated with particular objective functions is aasigned
. to every efficient solution. While talking aboutwutility R
functions and its relations with efficient solut Onséit is»fA ‘
interesting to mention P L Yu, who proved L18] the"for S

) uti’ity function increasing in every argument /the function ’
fs”gefined in criteria space/, the Optimal solution of pro,-.;
" blem /14/ will be an efficient one,, ’Linear utility functions

with positive coefficients belong to this class of functions..
4, Compromise solutions in MOLP problems. :~ - :
44, The set ZE is usually too 1arge and its analytical formu-

lation too complicated for practical use. That is why we con=~ -
fine our investigation to certain subset }{of E ’ which we
call the set of compromise’ solutions._i_, ,p”_ L
The setj&,is very frequently determined as a set of ‘Op=
timal solutions of all/scme of single criteria MP problems.
{i[h (M: ~o,xz)] Ixe 36} o /16/
for k = 1,2,3,... and where h, >0 /L = 1, ..i, /s IR
Note that problem /16/ is equivalent to. .
ma { L0 [ xe X1, e
where L, /x / \/Z[\f\ (M- M"‘)]k s so called Ly~ f<me'l:1:-i"c.
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U.eed above term is eo,u:valant
‘vmeans that the sets of optimal solutions /16/ and /16°/ .

are identical. S
It 1is obvious why we call a point M = é .’ ...,M ) as an ideal
Usually M doas ___@-}%gto
solution of /8/ in crlteria Space: solving /16/ or its equi-
valent /16 '/ for given k, we obta:.n such a point xke 36 s which
. image F /ﬁk/ ¢ T in criteria space is situated as close as pos-
| sible to the point.M 6 Rt, with respect to Ly~ metrio. The Opti-

’ ,mal solution x“ we take as a compromise solution of problem /8/ .

o If all the functions ¢;x>0 for ;kel?e, we shall use by = T8 My
= 13 1y eesy t/ 1in /16/, otherwise h:L = 1 /Mj_ - mi/' where my=
. min{ﬁ;_)k l)xe 36}

becau’se ‘then

¥oo¥ os (M- ex) <

15u<-t x6 X

..P,L .Yu has proved [18] some interesting prOperties of problam /16/
: Theorem 6_ 1

Whenx is bounded,then the “optimal solutions )k“oi‘ /16/ are
efficient for k = 1,2,35e00 and F/ %/ is the unique optimal

solution in the criteria space.

- For k = 1 the problem /16/ can be transformed to LP problem.
max{( (,\n)x\xe)é} | | Y2 7a

For k = 2 the problem /16/ belongs to the class of convex quae

dratic programming problens,

For k. > 2 all of the problems are NLP problems with convex o

objective i‘unction, what guarantees that there are unique opti-

mal solutions %% in decision space._‘

& .-
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4.2, while it is reasonable to motivate the choice of'degree

k for L, /x%/ metric if we take into account k 1 or'k = 2 and -
compute final optimal solution of problem: /8/ with one of the
metrices only, it is not so when we con31der k :r»‘:k2 and

kiy K, > 3 . That is a reason why in practlse we ‘use L,, L,
and also L, metric to calculate compromlse solutions in /8/.

The L, metric express llmlting tendency of Lk metrices when

k—?Oo..JO

K-> >0

L= A L 0o) = mwm—:fm)g-gm xeX..

The problem /8/ for k = @ is then T

1si ¢t
The problem /18/ known as €hebychey problem can be transformed
to the following LP problem.

z —>min %19/

/20/

where h [h1, coey h:] T. It is possible to prove [11] the

theorem analogous to theorem 1 for the problem /19/ - /20/.
4.3, Metrices Ly and Lo, occupy the extreme positions in é
family of L, metrices. That is why some suggestxons concerning
compromlse solutions deal with L1 and Ly metrices., As a first
we propose to consider two approaches, both leadlng to quadratlc

programming problem. They are two-stage procedures.
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In the first stage we compi.lte solutions )'r}', and Qw ’.

and in the second stage we solve problem, which pr‘ovides

compromise solution. In the first approach it is a problem.

1 Cx = M= i | /24/
S.t.
Ax =1b
L) & L (%) | | /22/
L) ¢ L) |
x> 0.

n [42] it was shown that constraints /22/ can be transformed

to linear form#

r -

A %
J\@:k
X

\i

\V4
S oo T

[22°/

Z

- b

T : ol A D
where 3 [31,...,gt] and simultaneously gy = max{da-x(. ) @.‘."‘@}
' If the first constraint in /22/ includes the requirement

¥ Y d. and also d; < g , it is redundant in /227/. That is
wﬁy'matrix A 1is replaced by N and vector' b is replaced.by. ﬁ)

- in /[227/.
In the second approach, one gets compromn.so solu'tlon solving'
“ 3‘;‘:‘ + 32 + lj% N\ - M “ -_ W\w'\. ' /23/
Sete. o

1]

A x >
@’k‘;'\j.Fo"ﬁ:.Foo_ ‘j;w =0 /2]
R
x> O A >/ O (L:«/2/5>
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where F F(Q) ! oo F(ﬁw) .
Both approaches define compromise solution as a point from
the subset of X , determined by X, , and fo /aisferently for
each approach/, which has an image F/&'/ in criteria space; si-
tuated as close as possible in a ‘sense of L2 metric to ideal
solution, : ' TR B -Q*_ ‘ ‘
4.&. Frequently , decision maker can not preoise definite va-
lues of weights attached to particular goals, what is necessary
while constructing additive utility funotion. Also he is not
able to provide sufficient information required for the estima-
tion of utility function parametaps N On ‘the. other hand decision
maker’s experience helps him to define interva}.s <6\., ; $,>C<O 1>
for particular weights Py. This kind of additional information B
. is also helpful in utility £Unotion construction. Computation
of the problem /8/ optimal solution_can-be replaced by solving:

Y lx — vax o

Sete ' f,: T :“'\}f'fii o /25/
[1 T . ‘ .
o4

/26/

omd o(>/0 ﬁ<[1 :
The problem /25/ [26/ is so called bilinear programming pro-

blem, with boundéd solutions set, This gives an opportunity to
solve problem /25/ - /26/ by some simplex procedure ‘;3](.

5., On some M,Zeleny proposal, '

5.4. M.Zeleny proposed [18] to define set JA of problem /8/

as the efficient solutions set of the following bicriterial

mathematical programming problems

SRS
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Notice that the objective functions in /27/ are the aggregates
of all objective functions of problem /8/, Also the problem /27/’
is interesting, because they can be replaced according to theo-

rem 5 by the one parametric problem:

min{(ﬂ 2L, ) £ A L ¢) | xe }C} for Ae<0O;1 >:

For A = O the above problem is equivalent to /16/ with k = 1,
and for \ = 1 it is equivalent to /16/ with k = <0 or in other
words to /18/. It is easy to show that this problem can be trans-

formed to the one-parametric LP problem:

(A-1)(Zhiei)n - Az —> wax 28/
Sete - |
Al x =D
Co 'z = H "oy N eE 0D 29/
x 2 0.

" By solving /28/ = /29/ we get the following division:

4 o v - :
<O)\> = %_:)\</\3-| )Ad> '/30/

where A, = O, )LP= 1 and a given optimal solution 5?46 is asso-

ciated with the in{:erva1<>t~3_. ) hcp for J = 1,...,p and simulta=-

neously‘)i,::?cl andlipzzga, . In fact division /30/ defines the

séquencé of r > p different basic optimal solutions of /28/-129/:
Ag” ¥ ag

hrydls 455 B

because more than two optimal solutions may be associated with .

5 are adja=-

a2 e e
cent to its neighbours and obviously x,= X, )QMOL %LoT Qm

wA
some critical wvalues ‘)j' Most of the solutions X
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According to theorem 5 we know that all r solutions X, f are

efficient basic solutions of /28/ - /29/. With respect to our

earlier assumptions we take:
W=7 U{X' \U=5)% « & %;,,; O< <f} /31/

Naturally JA C x omd. A = 2‘_ means that every X & JA is
efficient with respect to the minimization of L1 and Ly func-

L,l,

tions, but we want to know if it is efficient with respect to
maximization of all ¢, % , so if ‘3{‘ (e f .
In [13] one proves -that

Theorem 7
The following relation holds for the set given by /31/:

EL.,L’«, C \6 .

Therefore formula /31/ defines the set of compromise solutions
in problem /8/.

5.2. The set 31\, defined by /31/ can be too large for the deci-
sion maker in his search for final solution of problem /8/.
Then two approaches are possible,

The first approach. For each %8 we determine the set of
weights in linear utility functions which have X. as their

¥
optimal solution. So it is

% -{p| W wasx{FCxlxe 2] p >0, [4Tp= 1]
/3 = 152y0eus7/
The final solution can be taken by the decision maker on the

~basis of his evaluation of goodness of weights attached to par-

. ticular goals given by “> € C;-a
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- The sfecond approach, It is ‘more formal approach than the first

one, We take the set @,, which is the image of}\. in the space

g /'L,]XLQ, o If we introduce the notations. ) _ '
‘ U = L1«/)ki/ , vist/)l(i/ for i = 1, eee,

we obtain r points ‘

: i
dei‘imng set @, in the following way

iy/\y U= &)y « 8oy >'o< 8 41} 32/

) Next we determine a point )70 [uo, VO] T taking either
u,’ = L1 [ Kyls vy Ly /&M/,. where X is such, that
F/Xm/ =M. or u5'=L1/ / v = oo/)x /

The vector YO represents the image of ideal solutions of /8/

Y. =L“;i] L4XLo, /131, eee,r/

.in L XLw spaoe. o
' The vector y,:}: yo . and 70 represents the ideal solution of /27/
in criteria space L,,XLO,, . F |
The: solution vector % mll be taken as a such point of}&

that )y [L /)x /, L />k /] Q is the nearest point from )yo r
among all ‘elements of@., when the distanoe is expressed by Bucli-

'.dian metric, i.e,

R .
“\#.—70“ »:"wx'w» {www“u A’)y +X.7/m \/O“ }. | /33/

1gvgr-t 104, <1

5.3. We do not need to use any specific MP prooedure to find ¥
by /33/. The problem /33/ may be put into the following form

by very simple algebraic operations:
min {mm‘((f)} /33°/
\( e A 0(8’ ‘-l :

where €, (¥}) = A b, §; + ¢, and



aj = & + B Ay =wgq=wy
by = =2/A;Cy 4 + BiDi-.l-1/_ and By = Vi4q -y
o= Cf+0f Cy =y - vy
Dy = vy -V, |
€,/ 5,/ 15 a square function with coefficients a;» O for
1 21,2440y v=1. S0 ¥, reaches its global minimum at

5. = -b, i 2a, A}(;'z\)...),rr-‘\).

Let ¥ €< O; ;1>  denote such number, that'

RS w )= win { G(5) O K 4«}

Therefore

@) when 5" ¢O
x';’: 5" when  0< 3¢ - I3/
| TRV P T
Having caltulated €°=Y (X'?) | for i= 1400 r-‘l one can

replace problem /33/ by a new ones .
g plt= Qo= v {3 | 12420 7 43 /351

Observe the shape of set Q and its special location wi'th respect
to the point ¥ o» what is shown on fig.lt These properties of the
. set Q follow from its definition,yo determination and theoren 4, .
It allows us to obtain solution % without necessity of calcula-
ting a11Y or even A;, B;, C;, D, at the start of problem /35/
solving, These quantities may be constructed gradually, and pro- .
Y )
cefure is terminated when one reaches ‘ev. '

More detailed description of this procedure is given in the pa-

per [8]
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) The set O must be located below a etrazght L he

Leo=Lut , because 1t is easy to vae that mex)zhc)x)'
for each xe & :
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Vol

Having determined €v we start to look for the solutiorj )?( .

This depends on one of the two situations, which condiected to
»

Cv.

A
"I‘°fv is a unique solution of /35/, then
L = - (o) ~/ o)
B=/1- 8% % + 52 %,

where § 3 is computed according to /34/ and

o<5’3<1 if 1¢v<r =1
o,§6’3<1 if v=1
049 ¢ 1f v = rel.

o . o o o _
2~ There are two ogtn.mal values 'ev = fv+1 , then & v = 1,

3_‘,1 = 0 and a final solution is:
.§ - s
= Fyeqe

5.4; Finally it should be stressed that we did not mention
about interactive programming, while discussing the procedu-
res dealing with compromise solutions determination. The in-
teractive methods are becoming more popular nowédays, because
of their "interactive" character between the researcher and
decision maker during computation phase, It seems that very
good review and some interesting proposals dealing with the
application of intéractive programming to compromise solu-
tions determination, can be found in paper [20] written by I.

Wallenius,
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